32,921 research outputs found

    Lifting 1/4-BPS States on K3 and Mathieu Moonshine

    Full text link
    The elliptic genus of K3 is an index for the 1/4-BPS states of its sigma model. At the torus orbifold point there is an accidental degeneracy of such states. We blow up the orbifold fixed points using conformal perturbation theory, and find that this fully lifts the accidental degeneracy of the 1/4-BPS states with h=1. At a generic point near the Kummer surface the elliptic genus thus measures not just their index, but counts the actual number of these BPS states. We comment on the implication of this for symmetry surfing and Mathieu moonshine.Comment: 29+5 pp, a sign mistake corrected in eqs. (3.14) and (4.20), footnote 6 added to clarify this point, references adde

    Genus Two Partition Functions and Renyi Entropies of Large c CFTs

    Full text link
    We compute genus two partition functions in two dimensional conformal field theories at large central charge, focusing on surfaces that give the third Renyi entropy of two intervals. We compute this for generalized free theories and for symmetric orbifolds, and compare it to the result in pure gravity. We find a new phase transition if the theory contains a light operator of dimension Δ≤0.19\Delta\leq0.19. This means in particular that unlike the second Renyi entropy, the third one is no longer universal.Comment: 28 pages + Appendice

    Thermal performance of multilayer insulations Interim report

    Get PDF
    Heat flux and optical property measurement for multilayer insulatio

    Conversion from linear to circular polarization in FPGA

    Full text link
    Context: Radio astronomical receivers are now expanding their frequency range to cover large (octave) fractional bandwidths for sensitivity and spectral flexibility, which makes the design of good analogue circular polarizers challenging. Better polarization purity requires a flatter phase response over increasingly wide bandwidth, which is most easily achieved with digital techniques. They offer the ability to form circular polarization with perfect polarization purity over arbitrarily wide fractional bandwidths, due to the ease of introducing a perfect quadrature phase shift. Further, the rapid improvements in field programmable gate arrays provide the high processing power, low cost, portability and reconfigurability needed to make practical the implementation of the formation of circular polarization digitally. Aims: Here we explore the performance of a circular polarizer implemented with digital techniques. Methods: We designed a digital circular polarizer in which the intermediate frequency signals from a receiver with native linear polarizations were sampled and converted to circular polarization. The frequency-dependent instrumental phase difference and gain scaling factors were determined using an injected noise signal and applied to the two linear polarizations to equalize the transfer characteristics of the two polarization channels. This equalization was performed in 512 frequency channels over a 512 MHz bandwidth. Circular polarization was formed by quadrature phase shifting and summing the equalized linear polarization signals. Results: We obtained polarization purity of -25 dB corresponding to a D-term of 0.06 over the whole bandwidth. Conclusions: This technique enables construction of broad-band radio astronomy receivers with native linear polarization to form circular polarization for VLBI.Comment: 11 pages 8 figure

    Aqua MODIS Electronic Crosstalk on SMWIR Bands 20 to 26

    Full text link
    Aqua MODIS Moon images obtained with bands 20 to 26 (3.66 - 4.55 and 1.36 - 1.39 μ\mum) during scheduled lunar events show evidence of electronic crosstalk contamination of the response of detector 1. In this work, we determined the sending bands for each receiving band. We found that the contaminating signal originates, in all cases, from the detector 10 of the corresponding sending band and that the signals registered by the receiving and sending detectors are always read out in immediate sequence. We used the lunar images to derive the crosstalk coefficients, which were then applied in the correction of electronic crosstalk striping artifacts present in L1B images, successfully restoring product quality.Comment: Accepted to be published in the IEEE 2017 International Geoscience & Remote Sensing Symposium (IGARSS 2017), scheduled for July 23-28, 2017 in Fort Worth, Texas, US

    LAW IN EVOLUTION

    Get PDF

    Planetary nebulae after common-envelope phases initiated by low-mass red giants

    Full text link
    It is likely that at least some planetary nebulae are composed of matter which was ejected from a binary star system during common-envelope (CE) evolution. For these planetary nebulae the ionizing component is the hot and luminous remnant of a giant which had its envelope ejected by a companion in the process of spiralling-in to its current short-period orbit. A large fraction of CE phases which end with ejection of the envelope are thought to be initiated by low-mass red giants, giants with inert, degenerate helium cores. We discuss the possible end-of-CE structures of such stars and their subsequent evolution to investigate for which structures planetary nebulae are formed. We assume that a planetary nebula forms if the remnant reaches an effective temperature greater than 30 kK within 10^4 yr of ejecting its envelope. We assume that the composition profile is unchanged during the CE phase so that possible remnant structures are parametrized by the end-of-CE core mass, envelope mass and entropy profile. We find that planetary nebulae are expected in post-CE systems with core masses greater than about 0.3 solar masses if remnants end the CE phase in thermal equilibrium. We show that whether the remnant undergoes a pre-white dwarf plateau phase depends on the prescribed end-of-CE envelope mass. Thus, observing a young post-CE system would constrain the end-of CE envelope mass and post-CE evolution.Comment: Published in MNRAS. 12 pages, 12 figures. Minor changes to match published versio

    The Colorado School of Mines Nevada geothermal study

    Get PDF
    Geothermal systems in the Basin and Range Province of the western United States probably differ in many respects from geothermal systems already discovered in other parts of the world because of the unique tectonic setting. To investigate this, a study of the geothermal occurrences at Fly Ranch, approximately 100 miles north of Reno, Nevada, has been undertaken. Ample evidence for a geothermal system exists in this area, including the surface expression of heat flow in the form of hot springs, an extensive area of low electrical resistivity, and a high level of seismicity along faults bounding the thermal area. However, geophysical and geological studies have not yet provided evidence for a local heat source at depth. Additional detailed geophysical and geological studies, as well as drilling, must be completed before the geothermal system can be described fully

    On the susceptibility function of piecewise expanding interval maps

    Full text link
    We study the susceptibility function Psi(z) associated to the perturbation f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a spectral description of transfer operators. It gives in particular sufficient conditions which guarantee that Psi(z) is holomorphic in a disc of larger than one. Although Psi(1) is the formal derivative of the SRB measure of f_t with respect to t, we present examples satisfying our conditions so that the SRB measure is not Lipschitz.*We propose a new version of Ruelle's conjectures.* In v2, we corrected a few minor mistakes and added Conjectures A-B and Remark 4.5. In v3, we corrected the perturbation (X(f(x)) instead of X(x)), in particular in the examples from Section 6. As a consequence, Psi(z) has a pole at z=1 for these examples.Comment: To appear Comm. Math. Phy
    • …
    corecore