31,551 research outputs found

    Summary of the Very Large Hadron Collider Physics and Detector Subgroup

    Get PDF
    We summarize the activity of the Very Large Hadron Collider Physics and Detector subgroup during Snowmass 96.Comment: To appear in the Proceedings of the 1996 DPF/DPB Summer Study on New Directions for High-Energy Physics, Snowmass 9

    Electroweak Radiative Corrections to WW and ZZ Boson Production in Hadronic Collisions

    Get PDF
    Some results of a calculation of electroweak radiative corrections to WW and ZZ boson production in hadronic collisions are presented.Comment: 4 pages, LaTeX, uses sprocl.sty, 2 embedded postscript figures, to appear in the Proceedings of the DPF96 Conferenc

    Complex mass renormalization in EFT

    Full text link
    We consider an effective field theory of unstable particles (resonances) using the complex-mass renormalization. As an application we calculate the masses and the widths of the ρ\rho meson and the Roper resonance.Comment: 8 pages, 2 figures; Proceedings of 6th International Workshop on Chiral Dynamics, 6-10 July 2009, Bern, Switzerlan

    Red Giants in the Small Magellanic Cloud. II. Metallicity Gradient and Age-Metallicity Relation

    Full text link
    We present results from the largest CaII triplet line metallicity study of Small Magellanic Cloud (SMC) field red giant stars to date, involving 3037 objects spread across approximately 37.5 sq. deg., centred on this galaxy. We find a median metallicity of [Fe/H]=-0.99+/-0.01, with clear evidence for an abundance gradient of -0.075+/-0.011 dex / deg. over the inner 5 deg. We interpret the abundance gradient to be the result of an increasing fraction of young stars with decreasing galacto-centric radius, coupled with a uniform global age-metallicity relation. We also demonstrate that the age-metallicity relation for an intermediate age population located 10kpc in front of the NE of the Cloud is indistinguishable from that of the main body of the galaxy, supporting a prior conjecture that this is a stellar analogue of the Magellanic Bridge. The metal poor and metal rich quartiles of our RGB star sample (with complementary optical photometry from the Magellanic Clouds Photometric Survey) are predominantly older and younger than approximately 6Gyr, respectively. Consequently, we draw a link between a kinematical signature, tentatively associated by us with a disk-like structure, and the upsurges in stellar genesis imprinted on the star formation history of the central regions of the SMC. We conclude that the increase in the star formation rate around 5-6Gyr ago was most likely triggered by an interaction between the SMC and LMC.Comment: To appear in MNRA

    Red Giants in the Small Magellanic Cloud. I. Disk and Tidal Stream Kinematics

    Full text link
    We present results from an extensive spectroscopic survey of field stars in the Small Magellanic Cloud (SMC). 3037 sources, predominantly first-ascent red giants, spread across roughly 37.5 sq. deg, are analysed. The line of sight velocity field is dominated by the projection of the orbital motion of the SMC around the LMC/Milky Way. The residuals are inconsistent with both a non-rotating spheroid and a nearly face on disk system. The current sample and previous stellar and HI kinematics can be reconciled by rotating disk models with line of nodes position angle, theta, ~ 120-130 deg., moderate inclination (i ~ 25-70 deg.), and rotation curves rising at 20-40 km/s/kpc. The metal-poor stars exhibit a lower velocity gradient and higher velocity dispersion than the metal-rich stars. If our interpretation of the velocity patterns as bulk rotation is appropriate, then some revision to simulations of the SMC orbit is required since these are generally tuned to the SMC disk line-of-nodes lying in a NE-SW direction. Residuals show strong spatial structure indicative of non-circular motions that increase in importance with increasing distance from the SMC centre. Kinematic substructure in the north-west part of our survey area is associated with the tidal tail or Counter-Bridge predicted by simulations. Lower line-of-sight velocities towards the Wing and the larger velocities just beyond the SW end of the SMC Bar are probably associated with stellar components of the Magellanic Bridge and Counter-Bridge, respectively. Our results reinforce the notion that the intermediate-age stellar population of the SMC is subject to substantial stripping by external forces.Comment: To appear in MNRA

    On the susceptibility function of piecewise expanding interval maps

    Full text link
    We study the susceptibility function Psi(z) associated to the perturbation f_t=f+tX of a piecewise expanding interval map f. The analysis is based on a spectral description of transfer operators. It gives in particular sufficient conditions which guarantee that Psi(z) is holomorphic in a disc of larger than one. Although Psi(1) is the formal derivative of the SRB measure of f_t with respect to t, we present examples satisfying our conditions so that the SRB measure is not Lipschitz.*We propose a new version of Ruelle's conjectures.* In v2, we corrected a few minor mistakes and added Conjectures A-B and Remark 4.5. In v3, we corrected the perturbation (X(f(x)) instead of X(x)), in particular in the examples from Section 6. As a consequence, Psi(z) has a pole at z=1 for these examples.Comment: To appear Comm. Math. Phy

    Stellar Associations and their Field East of LMC 4 in the Large Magellanic Cloud

    Get PDF
    We report about the stellar content and the luminosity and mass functions of three stellar associations and their field located on the north-east edge of the super-bubble LMC 4 in the Large Magellanic Cloud.Comment: To be appeared in the meeting Proceedings of ``Modes of Star Formation and the Origin of Field Populations'', Heidelberg, Germany, October 2000; to be published in the ASP Conference Series, edited by E. K. Grebel and W. Brandne

    Effect of metallurgical structure and properties on adhesion and friction behavior of cobalt alloys

    Get PDF
    The metallurgical structure and some of the mechanical properties of two cobalt alloys, cobalt-50% iron and cobalt-25% molybdenum-10% chromium, were determined under various heat treated conditions. The mechanical properties of the bcc disordered Co-50Fe alloy, which was found to be very brittle, indicated an exceedingly low fracture strength, low hardness, and very weak grain boundary strength. Ordering by suitable heat treatment only produced a more brittle material with a lower fracture strength and a slightly higher hardness value. Work hardening was found to produce a finer grain structure and a greater grain boundary strength. Tensile properties were examined. It was found that the Co-25Mo-10Cr alloy was difficult to place in the alpha Co solid solution condition, which limited the ability to use precipitation as a hardening reaction. Over two hundred adhesion cycles from zero contact load, to maximum load, to fracture were conducted between couples for each of the above alloys in an ultrahigh vacuum system which would permit the sample surfaces to be cleaned of all contaminant layers. In the Co-50Fe case, the calculated fracture stress from the adhesion tests showed values in the range of 80 to 150 k.s.i., which is about ten times greater than the values from tension tests

    Assessing the Effectiveness of a Computer Simulation in Introductory Undergraduate Environments

    Get PDF
    We present studies documenting the effectiveness of using a computer simulation, specifically the Circuit Construction Kit (CCK) developed as part of the Physics Education Technology Project (PhET) [1, 2], in two environments: an interactive college lecture and an inquiry-based laboratory. In the first study conducted in lecture, we compared students viewing CCK to viewing a traditional demonstration during Peer Instruction [3]. Students viewing CCK had a 47% larger relative gain (11% absolute gain) on measures of conceptual understanding compared to traditional demonstrations. These results led us to study the impact of the simulation's explicit representation for visualizing current flow in a laboratory environment, where we removed this feature for a subset of students. Students using CCK with or without the explicit visualization of current performed similarly to each other on common exam questions. Although the majority of students in both groups favored the use of CCK over real circuit equipment, the students who used CCK without the explicit current model favored the simulation more than the other grou
    corecore