310 research outputs found

    Differentiating founder and chronic HIV envelope sequences

    Get PDF
    This is the final version. Available from Public Library of Science via the DOI in this record.The sequence data are available in the Dryad Data Depository. Data package title: Data from: Differentiating founder and chronic HIV envelope sequences Provisional DOI: doi:10.5061/dryad.r19c2 Data files: HIV envelope sequences Seroconverter HIV subtype B envelope sequences.Significant progress has been made in characterizing broadly neutralizing antibodies against the HIV envelope glycoprotein Env, but an effective vaccine has proven elusive. Vaccine development would be facilitated if common features of early founder virus required for transmission could be identified. Here we employ a combination of bioinformatic and operations research methods to determine the most prevalent features that distinguish 78 subtype B and 55 subtype C founder Env sequences from an equal number of chronic sequences. There were a number of equivalent optimal networks (based on the fewest covarying amino acid (AA) pairs or a measure of maximal covariance) that separated founders from chronics: 13 pairs for subtype B and 75 for subtype C. Every subtype B optimal solution contained the founder pairs 178–346 Asn-Val, 232–236 Thr-Ser, 240–340 Lys-Lys, 279–315 Asp-Lys, 291–792 Ala-Ile, 322–347 Asp-Thr, 535–620 Leu-Asp, 742–837 Arg-Phe, and 750–836 Asp-Ile; the most common optimal pairs for subtype C were 644–781 Lys-Ala (74 of 75 networks), 133–287 Ala-Gln (73/75) and 307–337 Ile-Gln (73/75). No pair was present in all optimal subtype C solutions highlighting the difficulty in targeting transmission with a single vaccine strain. Relative to the size of its domain (0.35% of Env), the α4β7 binding site occurred most frequently among optimal pairs, especially for subtype C: 4.2% of optimal pairs (1.2% for subtype B). Early sequences from 5 subtype B pre-seroconverters each exhibited at least one clone containing an optimal feature 553–624 (Ser-Asn), 724–747 (Arg-Arg), or 46–293 (Arg-Glu).University of New South Wales (UNSW) Goldstar Gran

    Nanoparticle Delivery Platforms for RNAi Therapeutics Targeting COVID-19 Disease in the Respiratory Tract.

    Full text link
    Since December 2019, a pandemic of COVID-19 disease, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread across the globe. At present, the Food and Drug Administration (FDA) has issued emergency approval for the use of some antiviral drugs. However, these drugs still have limitations in the specific treatment of COVID-19, and as such, new treatment strategies urgently need to be developed. RNA-interference-based gene therapy provides a tractable target for antiviral treatment. Ensuring cell-specific targeted delivery is important to the success of gene therapy. The use of nanoparticles (NPs) as carriers for the delivery of small interfering RNA (siRNAs) to specific tissues or organs of the human body could play a crucial role in the specific therapy of severe respiratory infections, such as COVID-19. In this review, we describe a variety of novel nanocarriers, such as lipid NPs, star polymer NPs, and glycogen NPs, and summarize the pre-clinical/clinical progress of these nanoparticle platforms in siRNA delivery. We also discuss the application of various NP-capsulated siRNA as therapeutics for SARS-CoV-2 infection, the challenges with targeting these therapeutics to local delivery in the lung, and various inhalation devices used for therapeutic administration. We also discuss currently available animal models that are used for preclinical assessment of RNA-interference-based gene therapy. Advances in this field have the potential for antiviral treatments of COVID-19 disease and could be adapted to treat a range of respiratory diseases

    HIV-1 DNA Is Maintained in Antigen-Specific CD4+ T Cell Subsets in Patients on Long-Term Antiretroviral Therapy Regardless of Recurrent Antigen Exposure

    Full text link
    Memory CD4+ T cells (mCD4s) containing integrated HIV DNA are considered the main barrier to a cure for HIV infection. Here, we analyzed HIV DNA reservoirs in antigen-specific subsets of mCDs to delineate the mechanisms by which HIV reservoirs persist during antiretroviral therapy (ART). HIV Gag, cytomegalovirus (CMV), and tetanus toxoid (TT)-specific mCD4s were isolated from peripheral blood samples obtained from 11 individual subjects, 2-11 years after commencing ART. Antigen-specific mCD4s were identified by the sensitive OX40 assay and purified by cell sorting. Total HIV DNA levels were quantified by real-time PCR, and clonal viral sequences generated from mCD4 subsets and pre-ART plasma samples. Quantitative results and sequence analysis were restricted to five and three study participants, respectively, which was likely due to the low frequency of the antigen-specific mCD4s and relatively low HIV DNA proviral loads. Median HIV Gag-, CMV-, and TT-specific mCD4s were 0.61%, 2.46%, and 0.78% of total mCD4s, and they contained a median of 2.50, 2.38, and 2.55 log 10 copies of HIV DNA per 10 6 cells, respectively. HIV DNA sequences were derived from antigen-specific mCD4s clustered with sequences derived from pre-ART plasma samples. There was a trend toward increased viral diversity in clonal viral sequences derived from CMV-specific mCD4s relative to TT-specific mCD4s. Despite limitations, this study provides direct evidence that HIV reservoirs persist in memory CD4+ T cell subsets maintained by homeostatic proliferation (TT) and adds to growing evidence against viral evolution during ART. Similar future studies require techniques that sample diverse HIV reservoirs and with improved sensitivity

    Quantification of Residual Germinal Center Activity and HIV-1 DNA and RNA Levels Using Fine Needle Biopsies of Lymph Nodes during Antiretroviral Therapy

    Full text link
    HIV-1 reservoirs are most often studied in peripheral blood (PB), but not all lymphocytes recirculate, particularly T follicular helper (Tfh) CD4+ T cells, as well as germinal center (GC) B cells, in lymph nodes (LNs). Ultrasound-guided fine needle biopsies (FNBs) from inguinal LNs and PB samples were obtained from 10 healthy controls (HCs) and 21 HIV-1-infected subjects [11 antiretroviral therapy (ART) naive and 10 on ART]. Tfh cells and GC B cells were enumerated by flow cytometry. HIV-1 DNA and cell-associated (CA) RNA levels in LNs and PB were quantified by real-time polymerase chain reaction. FNBs were obtained without adverse events. Tfh cells and GC B cells were highly elevated in ART-naive subjects, with a median GC B cell count >300-fold higher than HCs, but also remained higher in 4 out of the 10 subjects on ART. GC B cell counts and Tfh cell counts were highly correlated with each other, and also with activated T cells in LNs but not in blood. Levels of HIV-1 DNA and CA RNA viral burden in highly purified CD4+ T cells from FNBs were significantly elevated compared with those in CD4+ T cells from PB in the ART-naive group, but only trended toward an increase in the ART patients. FNBs enabled minimally invasive access to, and parallel measurement of residual activated T and B cells and viral burden within LNs in HIV-1-infected patients. These FNBs revealed significant GC activity that was not apparent from corresponding PB samples

    Circulating gluten-specific FOXP3<sup>+</sup>CD39<sup>+</sup> regulatory T cells have impaired suppressive function in patients with celiac disease

    Full text link
    Background Celiac disease is a chronic immune-mediated inflammatory disorder of the gut triggered by dietary gluten. Although the effector T-cell response in patients with celiac disease has been well characterized, the role of regulatory T (Treg) cells in the loss of tolerance to gluten remains poorly understood. Objective We sought to define whether patients with celiac disease have a dysfunction or lack of gluten-specific forkhead box protein 3 (FOXP3)+ Treg cells. Methods Treated patients with celiac disease underwent oral wheat challenge to stimulate recirculation of gluten-specific T cells. Peripheral blood was collected before and after challenge. To comprehensively measure the gluten-specific CD4+ T-cell response, we paired traditional IFN-γ ELISpot with an assay to detect antigen-specific CD4+ T cells that does not rely on tetramers, antigen-stimulated cytokine production, or proliferation but rather on antigen-induced coexpression of CD25 and OX40 (CD134). Results Numbers of circulating gluten-specific Treg cells and effector T cells both increased significantly after oral wheat challenge, peaking at day 6. Surprisingly, we found that approximately 80% of the ex vivo circulating gluten-specific CD4+ T cells were FOXP3+CD39+ Treg cells, which reside within the pool of memory CD4+CD25+CD127lowCD45RO+ Treg cells. Although we observed normal suppressive function in peripheral polyclonal Treg cells from patients with celiac disease, after a short in vitro expansion, the gluten-specific FOXP3+CD39+ Treg cells exhibited significantly reduced suppressive function compared with polyclonal Treg cells. Conclusion This study provides the first estimation of FOXP3+CD39+ Treg cell frequency within circulating gluten-specific CD4+ T cells after oral gluten challenge of patients with celiac disease. FOXP3+CD39+ Treg cells comprised a major proportion of all circulating gluten-specific CD4+ T cells but had impaired suppressive function, indicating that Treg cell dysfunction might be a key contributor to disease pathogenesis

    Early expansion of CD38+ICOS+ GC Tfh in draining lymph nodes during influenza vaccination immune response

    Full text link
    T follicular helper (Tfh) cells provide critical help to B cells during the germinal center (GC) reaction to facilitate generation of protective humoral immunity. Accessing the human lymph node (LN) to study the commitment of CD4 T cells to GC Tfh cell differentiation during in vivo vaccine responses is difficult. We used ultrasound guided fine needle biopsy to monitor recall responses in axillary LNs to seasonal influenza vaccination in healthy volunteers. Specific expansion of GC cell subsets occurred exclusively within draining LNs five days postvaccination. Draining LN GC Tfh and precursor-Tfh cells express higher levels of CD38, ICOS, and Ki67, indicating they were significantly more activated, motile, and proliferating, compared to contralateral LN cells. These observations provide insight into the early expansion phase of the human Tfh lineage within LNs during a vaccine induced memory response and highlights early LN immune responses may not be reflected in the periphery

    HIV-1 DNA predicts disease progression and post-treatment virological control.

    Get PDF
    In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials

    SARS Coronavirus-2 Microneutralisation and Commercial Serological Assays Correlated Closely for Some but Not All Enzyme Immunoassays

    Full text link
    Serological testing for SARS-CoV-2-specific antibodies provides important research and diagnostic information relating to COVID-19 prevalence, incidence and host immune response. A greater understanding of the relationship between functionally neutralising antibodies detected using microneutralisation assays and binding antibodies detected using scalable enzyme immunoassays (EIA) is needed in order to address protective immunity post-infection or vaccination, and assess EIA suitability as a surrogate test for screening of convalescent plasma donors. We assessed whether neutralising antibody titres correlated with signal cut-off ratios in five commercially available EIAs, and one in-house assay based on expressed spike protein targets. Sera from recovered patients or convalescent plasma donors who reported laboratory-confirmed SARS-CoV-2 infection (n = 200), and negative control sera collected prior to the COVID-19 pandemic (n = 100), were assessed in parallel. Performance was assessed by calculating EIA sensitivity and specificity with reference to microneutralisation. Neutralising antibodies were detected in 166 (83%) samples. Compared with this, the most sensitive EIAs were the Cobas Elecsys Anti-SARS-CoV-2 (98%) and Vitros Immunodiagnostic Anti-SARS-CoV-2 (100%), which detect total antibody targeting the N and S1 antigens, respectively. The assay with the best quantitative relationship with microneutralisation was the Euroimmun IgG. These results suggest the marker used (total Ab vs. IgG vs. IgA) and the target antigen are important determinants of assay performance. The strong correlation between microneutralisation and some commercially available assays demonstrates their potential for clinical and research use in assessing protection following infection or vaccination, and use as a surrogate test to assess donor suitability for convalescent plasma donation
    • …
    corecore