15 research outputs found

    Effects of Demand-Side Restrictions on High-Deforestation Palm Oil in Europe on Deforestation and Emissions in Indonesia

    Get PDF
    13-C-AJFF-PU-29, 36This is an open access article under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) license https://creativecommons.org/licenses/by/4.0/. Please cite this article as:Jonah Busch et al 2022 Environ. Res. Lett. 17 014035. https://doi.org/10.1088/1748-9326/ac435eDemand-side restrictions on high-deforestation commodities are expanding as a climate policy, but their impact on reducing tropical deforestation and emissions has yet to be quantified. Here we model the effects of demand-side restrictions on high-deforestation palm oil in Europe on deforestation and emissions in Indonesia. We do so by integrating a model of global trade with a spatially explicit model of land-use change in Indonesia. We estimate a European ban on high-deforestation palm oil from 2000 to 2015 would have led to a 8.9% global price premium on low-deforestation palm oil, resulting in 21 374 ha yr 121 (1.60%) less deforestation and 21.1 million tCO2 yr 121 (1.91%) less emissions from deforestation in Indonesia relative to what occurred. A hypothetical Indonesia-wide carbon price would have achieved equivalent emission reductions at $0.81/tCO2. Impacts of a ban are small because: 52% of Europe\u2019s imports of high-deforestation palm oil would have shifted to non-participating countries; the price elasticity of supply of high-deforestation oil palm cropland is small (0.13); and conversion to oil palm was responsible for only 32% of deforestation in Indonesia. If demand-side restrictions succeed in substantially reducing deforestation, it is likely to be through non-price pathways

    Review of Historical Atlas of California

    No full text

    Review of Remote Sensing Methods to Map Coffee Production Systems

    No full text
    The coffee sector is working towards sector-wide commitments for sustainable production. Yet, knowledge of where coffee is cultivated and its environmental impact remains limited, in part due to the challenges of mapping coffee using satellite remote sensing. We recognize the urgency to capitalize on recent technological advances to improve remote sensing methods and generate more accurate, reliable, and scalable approaches to coffee mapping. In this study, we provide a systematic review of satellite-based approaches to mapping coffee extent, which produced 43 articles in the peer-reviewed and gray literature. We outline key considerations for employing effective approaches, focused on the need to balance data affordability and quality, classification complexity and accuracy, and generalizability and site-specificity. We discuss research opportunities for improved approaches by leveraging the recent expansion of diverse satellite sensors and constellations, optical/Synthetic Aperture Radar data fusion approaches, and advances in cloud computing and deep learning algorithms. We highlight the need for differentiating between production systems and the need for research in important coffee-growing geographies. By reviewing the range of techniques successfully used to map coffee extent, we provide technical recommendations and future directions to enable accurate and scalable coffee maps

    Rapid Assessment of Ecosystem Service Co-Benefits of Biodiversity Priority Areas in Madagascar

    No full text
    <div><p>The importance of ecosystems for supporting human well-being is increasingly recognized by both the conservation and development sectors. Our ability to conserve ecosystems that people rely on is often limited by a lack of spatially explicit data on the location and distribution of ecosystem services (ES), the benefits provided by nature to people. Thus there is a need to map ES to guide conservation investments, to ensure these co-benefits are maintained. To target conservation investments most effectively, ES assessments must be rigorous enough to support conservation planning, rapid enough to respond to decision-making timelines, and often must rely on existing data. We developed a framework for rapid spatial assessment of ES that relies on expert and stakeholder consultation, available data, and spatial analyses in order to rapidly identify sites providing multiple benefits. We applied the framework in Madagascar, a country with globally significant biodiversity and a high level of human dependence on ecosystems. Our objective was to identify the ES co-benefits of biodiversity priority areas in order to guide the investment strategy of a global conservation fund. We assessed key provisioning (fisheries, hunting and non-timber forest products, and water for domestic use, agriculture, and hydropower), regulating (climate mitigation, flood risk reduction and coastal protection), and cultural (nature tourism) ES. We also conducted multi-criteria analyses to identify sites providing multiple benefits. While our approach has limitations, including the reliance on proximity-based indicators for several ES, the results were useful for targeting conservation investments by the Critical Ecosystem Partnership Fund (CEPF). Because our approach relies on available data, standardized methods for linking ES provision to ES use, and expert validation, it has the potential to quickly guide conservation planning and investment decisions in other data-poor regions.</p></div
    corecore