14 research outputs found

    Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport

    Get PDF
    Widespread applications of ZnO nanoparticles (NP) in sun-blocking cosmetic products have raised safety concerns related to their potential transdermal penetration and resultant cytotoxicity. Nonlinear optical microscopy provides means for high-contrast imaging of ZnO NPs lending in vitro and in vivo assessment of the nanoparticle uptake in skin, provided their nonlinear optical properties are characterized. We report on this characterization using ZnO NP commercial product, Zinclear, mean-sized 21 nm. Two-photon action cross-section of this bandgap material (Ebg = 3.37 eV, λbg = 370 nm) measured by two techniques yielded consistent results of ηZnOσZnO(2ph) = 6.2 ± 0.8 μGM at 795 nm, and 32 ± 6 μGM at 770 nm per unit ZnO crystal cell, with the quantum efficiency of ηZnO = (0.9 ± 0.2) %. In order to demonstrate the quantitative imaging, nonlinear optical microscopy images of the excised human skin topically treated with Zinclear were acquired and processed using σZnO(2ph) and ηZnOvalues yielding nanoparticle concentration map in skin. Accumulations of Zinclear ZnO nanoparticles were detected only on the skin surface and in skin folds reaching concentrations of 800 NPs per μm3

    Optical generation of surface acoustic waves guided at the linear boundary between two thin films

    Get PDF
    Laser-induced transient grating measurements and ultrafast optical pump-probe imaging of surface acoustic waves near a linear boundary between copper and silica films on a silicon substrate indicate the presence of a boundary-localized mode with a phase velocity slightly below the Rayleigh wave velocity on the copper film. We analyze in detail the dispersion of this localized mode in comparison with that of the Rayleigh waves in the surrounding materials. The existence of the localized mode is ascribed to the nonuniformity of the copper film thickness near its edge resulting from polishing during fabrication

    Scar tissue classification using nonlinear optical microscopy and discriminant analysis

    No full text
    This paper addresses the scar tissue maturation process that occurs stepwise, and calls for reliable classification. The structure of collagen imaged by nonlinear optical microscopy (NLOM) in post-burn hypertrophic and mature scar, as well as in normal skin, appeared to distinguish these maturation steps. However, it was a discrimination analysis, demonstrated here, that automated and quantified the scar tissue maturation process. The achieved scar classification accuracy was as high as 96%. The combination of NLOM and discrimination analysis is believed to be instrumental in gaining insight into the scar formation, for express diagnosis of scar and surgery planning.9 page(s

    Interfacing nanodiamonds for single molecular optical-biomedical imaging

    No full text
    Luminescent nanodiamond is attractive for targeted drug-delivery and biolabelling due to its unique optical and chemical properties. A versatile bioconjugation protocol to dock biomolecules on the colloidal diamond and demonstration of cellular internalization is presented.2 page(s

    Sculpted substrates for SERS

    No full text
    Sculpted SERS-active substrates are prepared by assembling a closed packed monolayer of uniform polystyrene colloidal particles ( diameter 350 to 800 nm) onto an evaporated gold surface and then electrodepositing gold through this template to produce films with controlled thicknesses, measured as fractions of the sphere diameter, d. The resulting surfaces consist of a regular hexagonal array of interconnected spherical cross-section dishes. The role of localised plasmons in determining the SERS enhancement factor obtained for benzene thiol adsorbed onto the surfaces is then investigated by correlation of the UV-visible reflectance spectra, 400 to 900 nm, measured at the same positions on the substrate surfaces, with the SERS spectra. The results are interpreted in terms of the relative contributions of plasmons that are free to propagate across the top surface and those trapped within the dishes of the sculpted surfac

    A modular design of low-background bioassays based on a high-affinity molecular pair barstar:barnase

    No full text
    High-affinity molecular pairs provide a convenient and flexible modular base for the design of molecular probes and protein/antigen assays. Specificity and sensitivity performance indicators of a bioassay critically depend on the dissociation constant (KD) of the molecular pair, with avidin:biotin being the state-of-the-art molecular pair (KD ~ 1 fM) used almost universally for applications in the fields of nanotechnology and proteomics. In this paper, we present an alternative high-affinity protein pair, barstar:barnase (KD ~ 10 fM), which addresses several shortfalls of the avidin:biotin system, including non-negligible background due to the non-specific binding. A quantitative assessment of the non-specific binding carried out using a model assay revealed inherent irreproducibility of the [strept]avidin:biotin-based assays, attributed to the avidin binding to solid phases, endogenous biotin molecules and serum proteins. On the other hand, the model assays assembled via a barstar:barnase protein linker proved to be immune to such non-specific binding, showing good prospects for high-sensitivity rare biomolecular event nanoproteomic assays.7 page(s

    Pharmacological characterization of a recombinant, fluorescent somatostatin receptor agonist

    No full text
    Somatostatin (SST) is a peptide neurotransmitter/hormone found in several mammalian tissue types. Apart from its natural importance, labeled SST/analogues are utilized in clinical applications such as targeting/diagnosis of neuroendocrine tumors. We report on the development and characterization of a novel, recombinant, fluorescent somatostatin analogue that has potential to elucidate somatostatin-activated cell signaling. SST was genetically fused with a monomeric-red fluorescent protein (mRFP) as the fluorescent label. The attachment of SST to mRFP had no detectable effect on its fluorescent properties. This analogue's potency to activate the endogenous and transfected somatostatin receptors was characterized using assays of membrane potential and Ca2+ mobilization and immunocytochemistry. SST-mRFP was found to be an effective somatostatin receptor agonist, able to trigger the membrane hyperpolarization, mobilization of the intracellular Ca2+ and recept or-ligand internalization in cells expressing somatostatin receptors. This complex represents a novel optical reporter due to its red emission spectral band suitable for in vivo imaging and tracking of the somatostatin receptor signaling pathways, affording higher resolution and sensitivity than those of the state-of-the-art radiolabeling bioassays.8 page(s
    corecore