16 research outputs found

    A connection between stress and development in the multicelular prokaryote Streptomyces coelicolor

    Get PDF
    Morphological changes leading to aerial mycelium formation and sporulation in the mycelial bacterium Streptomyces coelicolor rely on establishing distinct patterns of gene expression in separate regions of the colony. sH was identified previously as one of three paralogous sigma factors associated with stress responses in S. coelicolor. Here, we show that sigH and the upstream gene prsH (encoding a putative antisigma factor of sH) form an operon transcribed from two developmentally regulated promoters, sigHp1 and sigHp2. While sigHp1 activity is confined to the early phase of growth, transcription of sigHp2 is dramatically induced at the time of aerial hyphae formation. Localization of sigHp2 activity using a transcriptional fusion to the green fluorescent protein reporter gene (sigHp2–egfp) showed that sigHp2 transcription is spatially restricted to sporulating aerial hyphae in wild-type S. coelicolor. However, analysis of mutants unable to form aerial hyphae (bld mutants) showed that sigHp2 transcription and sH protein levels are dramatically upregulated in a bldD mutant, and that the sigHp2–egfp fusion was expressed ectopically in the substrate mycelium in the bldD background. Finally, a protein possessing sigHp2 promoter-binding activity was purified to homogeneity from crude mycelial extracts of S. coelicolor and shown to be BldD. The BldD binding site in the sigHp2 promoter was defined by DNase I footprinting. These data show that expression of sH is subject to temporal and spatial regulation during colony development, that this tissue-specific regulation is mediated directly by the developmental transcription factor BldD and suggest that stress and developmental programmes may be intimately connected in Streptomyces morphogenesis

    A novel compartment, the 'subqpical stem' of the aerial hyphae, is the location of a sigN-dependent, developmentally distinct transcription in Streptomyces coelicolor.

    Get PDF
    Streptomyces coelicolor has nine SigB-like RNA polymerase sigma factors, several of them implicated in morphological differentiation and/or responses to different stresses. One of the nine, SigN, is the focus of this article. A constructed sigN null mutant was delayed in development and exhibited a bald phenotype when grown on minimal medium containing glucose as carbon source. One of two distinct sigN promoters, sigNP1, was active only during growth on solid medium, when its activation coincided with aerial hyphae formation. Transcription from sigNP1 was readily detected in several whi mutants (interrupted in morphogenesis of aerial mycelium into spores), but was absent from all bld mutants tested, suggesting that sigNP1 activity was restricted to the aerial hyphae. It also depended on sigN, thus sigN was autoregulated. Mutational and transcription studies revealed no functional significance to the location of sigN next to sigF, encoding another SigB-like sigma factor. We identified another potential SigN target, nepA, encoding a putative small secreted protein. Transcription of nepA originated from a single, aerial hyphae-specific and sigN-dependent promoter. While in vitro run-off transcription using purified SigN on the Bacillus subtilis ctc promoter confirmed that SigN is an RNA polymerase sigma factor, SigN failed to initiate transcription from sigNP1 and from the nepA promoter in vitro. Additional in vivo data indicated that further nepA upstream sequences, which are likely to bind a potential activator, are required for successful transcription. Using a nepA–egfp transcriptional fusion we located nepA transcription to a novel compartment, the ‘subapical stem’ of the aerial hyphae. We suggest that this newly recognized compartment defines an interface between the aerial and vegetative parts of the Streptomyces colony and might also be involved in communication between these two compartments

    The RNA polymerase-binding protein RbpA confers basal levels of rifampicin resistance on Streptomyces coelicolor

    No full text
    RbpA is an RNA polymerase-binding protein that occurs in the actinomycete family of bacteria and is regulated by the disulphide stress-response sigma factor, sigma(R), in Streptomyces coelicolor. Here we demonstrate that rbpA null mutants exhibit a slow-growth phenotype and are particularly sensitive to the transcription inhibitor rifampicin. Strikingly, transcription mapping experiments revealed that rbpA expression is induced upon exposure of S. coelicolor to rifampicin and that this, in part, involves an increase in the activity of sigma(R). In contrast, the ribosomal RNA operon promoter rrnDp3, which is recognized by the vegetative sigma factor sigma(HrdB), was strongly inhibited by rifampicin. Reconstitution of RNAP from an rbpA null mutant with purified RbpA revealed that RbpA stimulates transcription from rrnDp3, even in the presence of rifampicin. The data presented suggest that RbpA confers basal levels of rifampicin resistance and is a novel regulator of rRNA synthesis in S. coelicolor

    SmeA, a small membrane protein with multiple functions in Streptomyces sporulation including targeting of a SpoIIIE/FtsK-like protein to cell division septa

    No full text
    Sporulation in aerial hyphae of Streptomyces coelicolor involves profound changes in regulation of fundamental morphogenetic and cell cycle processes to convert the filamentous and multinucleoid cells to small unigenomic spores. Here, a novel sporulation locus consisting of smeA (encoding a small putative membrane protein) and sffA (encoding a SpoIIIE/FtsK-family protein) is characterized. Deletion of smeA-sffA gave rise to pleiotropic effects on spore maturation, and influenced the segregation of chromosomes and placement of septa during sporulation. Both smeA and sffA were expressed specifically in apical cells of sporogenic aerial hyphae simultaneously with or slightly after Z-ring assembly. The presence of smeA-like genes in streptomycete chromosomes, plasmids and transposons, often paired with a gene for a SpoIIIE/FtsK- or Tra-like protein, indicates that SmeA and SffA functions might be related to DNA transfer. During spore development SffA accumulated specifically at sporulation septa where it colocalized with FtsK. However, sffA did not show redundancy with ftsK, and SffA function appeared distinct from the DNA translocase activity displayed by FtsK during closure of sporulation septa. The septal localization of SffA was dependent on SmeA, suggesting that SmeA may act as an assembly factor for SffA and possibly other proteins required during spore maturation

    The positions of the sigma-factor genes, whiG and sigF, in the hierarchy controlling the development of spore chains in the aerial hyphae of Streptomyces coelicolor A3(2)

    No full text
    whiG and sigF encode RNA polymerase sigma factors required for sporulation in the aerial hyphae of Streptomyces coelicolor. Their expression was analysed during colony development in wild-type and sporulation-defective whi mutant strains. Each gene was transcribed from a single promoter. Unexpectedly, whiG mRNA was present at all time points, including those taken prior to aerial mycelium formation; this suggests that whig may be regulated post-transcription-ally. Transcription of whig did not depend upon any of the six known 'early' whi genes required for sporulation septum formation (whiA, B, G, H, I and J), placing it at the top of the hierarchy of whi loci. sigF expression appeared to be regulated at the level of transcription; sigF transcripts were detected transiently when sporulation septa were observed in the aerial hyphae. Transcription of sigF depended upon all six of the early whi genes, including whiG. The sigF promoter does not resemble the consensus sequence established for σ(WhiG)- dependent promoters and Eσ(WhiG) did not transcribe from the sigF promoter in vitro. Consequently, the genetic dependence of sigF upon whig is very likely to be indirect. These results show that there is a hierarchical relationship between sigma factors required for Streptomyces sporulation and also that at least five other genes are involved in this transcriptional network
    corecore