27 research outputs found

    Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure

    Get PDF
    The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we use cryoelectron microscopy to determine the capsid structure of thermostable phage P74-26 to 2.8-A resolution. We find P74-26 capsids exhibit an overall architecture very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T = 7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased with a larger, flatter major capsid protein. Given these results, we predict decreased icosahedral complexity (i.e. T \u3c /= 7) leads to a more stable capsid assembly

    Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure [preprint]

    Get PDF
    The capsids of double-stranded DNA viruses protect the viral genome from the harsh extracellular environment, while maintaining stability against the high internal pressure of packaged DNA. To elucidate how capsids maintain stability in an extreme environment, we used cryoelectron microscopy to determine the capsid structure of the thermostable phage P74-26. We find the P74-26 capsid exhibits an overall architecture that is very similar to those of other tailed bacteriophages, allowing us to directly compare structures to derive the structural basis for enhanced stability. Our structure reveals lasso-like interactions that appear to function like catch bonds. This architecture allows the capsid to expand during genome packaging, yet maintain structural stability. The P74-26 capsid has T=7 geometry despite being twice as large as mesophilic homologs. Capsid capacity is increased through a novel mechanism with a larger, flatter major capsid protein. Our results suggest that decreased icosahedral complexity (i.e. lower T number) leads to a more stable capsid assembly

    A thermophilic phage uses a small terminase protein with a fixed helix-turn-helix geometry [preprint]

    Get PDF
    Tailed bacteriophage use a DNA packaging motor to encapsulate their genome during viral particle assembly. The small terminase (TerS) component acts as a molecular matchmaker by recognizing the viral genome as well as the main motor component, the large terminase (TerL). How TerS binds DNA and the TerL protein remains unclear. Here, we identify the TerS protein of the thermophilic bacteriophage P74-26. TerSP76-26 oligomerizes into a nonamer that binds DNA, stimulates TerL ATPase activity, and inhibits TerL nuclease activity. Our cryo-EM structure shows that TerSP76-26 forms a ring with a wide central pore and radially arrayed helix-turn-helix (HTH) domains. These HTH domains, which are thought to bind DNA by wrapping the helix around the ring, are rigidly held in an orientation distinct from that seen in other TerS proteins. This rigid arrangement of the putative DNA binding domain imposes strong constraints on how TerSP76-26 can bind DNA. Finally, the TerSP76-26 structure lacks the conserved C-terminal β-barrel domain used by other TerS proteins for binding TerL, suggesting that a well-ordered C-terminal β-barrel domain is not necessary for TerS to carry out its function as a matchmaker

    The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain

    Get PDF
    Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA

    A hyperthermophilic phage decoration protein suggests common evolutionary origin with Herpesvirus Triplex proteins and an anti-CRISPR protein [preprint]

    Get PDF
    Virus capsid proteins reproducibly self-assemble into regularly-shaped, stable shells that protect the viral genome from external environmental assaults, while maintaining the high internal pressure of the tightly packaged viral genome. To elucidate how capsids maintain stability under harsh conditions, we investigated the capsid components of a hyperthermophilic virus, phage P74-26. We determined the structure of a capsid protein gp87 and show that it has the same fold as trimeric decoration proteins that enhance the structural stability of capsids in many other phage, despite lacking significant sequence homology. We also find that gp87 is significantly more stable than its mesophilic homologs, reflecting the high temperature environment in which phage P74-26 thrives. Our analysis of the gp87 structure reveals that the core domain of the decoration protein is conserved in trimeric capsid components across numerous dsDNA viruses, including human pathogens such as Herpesviruses. Moreover, this core β-barrel domain is found in the anti-CRISPR protein AcrIIC1, which suggests a mechanism for the evolution of this broad spectrum Cas9 inhibitor. Our work illustrates the principles for increased stability of a thermophilic decoration protein, and extends the evolutionary reach of the core trimeric decoration protein fold

    Viral Packaging ATPases Utilize a Glutamate Switch to Couple ATPase Activity and DNA Translocation [preprint]

    Get PDF
    Many viruses utilize ringed packaging ATPases to translocate double-stranded DNA into procapsids during replication. A critical step in the mechanochemical cycle of such ATPases is ATP binding, which causes a subunit within the motor to grip DNA tightly. Here, we probe the underlying molecular mechanism by which ATP binding is coupled to DNA gripping and show that a glutamate switch residue found in AAA+ enzymes is central to this coupling in viral packaging ATPases. Using free energy landscapes computed through molecular dynamics simulations, we determined the stable conformational state of the ATPase active site in apo, ATP-bound, and ADP-bound states. Our results show that the catalytic glutamate residue transitions from an inactive to an active pose upon ATP binding, and that a residue assigned as the glutamate switch is necessary for regulating the transition. Further, we identified via mutual information analyses the intramolecular signaling pathway mediated by the glutamate switch that is responsible for coupling ATP binding to conformational transitions of DNA-gripping motifs. We corroborated these predictions with both structural and functional experimental data. Specifically, we showed that the crystal structure of the ADP-bound P74-26 packaging ATPase is consistent with the predicted structural coupling from simulations, and we further showed that disrupting the predicted signaling pathway indeed decouples ATPase activity from DNA translocation activity in the φ29 DNA packaging motor. Our work thus establishes a signaling pathway in viral DNA packaging motors that ensures coordination between chemical and mechanical events involved in viral DNA packaging

    Atomistic Mechanism of Force Generation, Translocation, and Coordination in a Viral Genome Packaging Motor [preprint]

    Get PDF
    Double-stranded DNA viruses package their genomes into pre-assembled protein capsids using virally-encoded ATPase ring motors. While several structures of isolated monomers (subunits) from these motors have been determined, they provide little insight into how subunits within a functional ring coordinate their activities to efficiently generate force and translocate DNA. Here we describe the first atomic-resolution structure of a functional ring form of a viral DNA packaging motor and characterize its atomic-level dynamics via long timescale molecular dynamics simulations. Crystal structures of the pentameric ATPase ring from bacteriophage asccφ28 show that each subunit consists of a canonical N-terminal ASCE ATPase domain connected to a ‘vestigial’ nuclease domain by a small lid subdomain. The lid subdomain closes over the ATPase active site and engages in extensive interactions with a neighboring subunit such that several important catalytic residues are positioned to function in trans. The pore of the ring is lined with several positively charged residues that can interact with DNA. Simulations of the ATPase ring in various nucleotide-bound states provide information about how the motor coordinates sequential nucleotide binding, hydrolysis, and exchange around the ring. Simulations also predict that the ring adopts a helical structure to track DNA, consistent with recent cryo-EM reconstruction of the φ29 packaging ATPase. Based on these results, an atomistic model of viral DNA packaging is proposed wherein DNA translocation is powered by stepwise helical-to-planar ring transitions that are tightly coordinated by ATP binding, hydrolysis, and release

    Structure of the human clamp loader bound to the sliding clamp: a further twist on AAA+ mechanism [preprint]

    Get PDF
    DNA replication requires the sliding clamp, a ring-shaped protein complex that encircles DNA, where it acts as an essential cofactor for DNA polymerases and other proteins. The sliding clamp needs to be actively opened and installed onto DNA by a clamp loader ATPase of the AAA+ family. The human clamp loader Replication Factor C (RFC) and sliding clamp PCNA are both essential and play critical roles in several diseases. Despite decades of study, no structure of human RFC has been resolved. Here, we report the structure of human RFC bound to PCNA by cryo-EM to an overall resolution of ~3.4 Å. The active sites of RFC are fully bound to ATP analogs, which is expected to induce opening of the sliding clamp. However, we observe the complex in a conformation prior to PCNA opening, with the clamp loader ATPase modules forming an over-twisted spiral that is incapable of binding DNA or hydrolyzing ATP. The autoinhibited conformation observed here has many similarities to a previous yeast RFC:PCNA crystal structure, suggesting that eukaryotic clamp loaders adopt a similar autoinhibited state early on in clamp loading. Our results point to a ‘Limited Change/Induced Fit’ mechanism in which the clamp first opens, followed by DNA binding inducing opening of the loader to release auto-inhibition. The proposed change from an over-twisted to an active conformation reveals a novel regulatory mechanism for AAA+ ATPases. Finally, our structural analysis of disease mutations leads to a mechanistic explanation for the role of RFC in human health

    Atomistic basis of force generation, translocation, and coordination in a viral genome packaging motor

    Get PDF
    Double-stranded DNA viruses package their genomes into pre-assembled capsids using virally-encoded ASCE ATPase ring motors. We present the first atomic-resolution crystal structure of a multimeric ring form of a viral dsDNA packaging motor, the ATPase of the asccphi28 phage, and characterize its atomic-level dynamics via long timescale molecular dynamics simulations. Based on these results, and previous single-molecule data and cryo-EM reconstruction of the homologous phi29 motor, we propose an overall packaging model that is driven by helical-to-planar transitions of the ring motor. These transitions are coordinated by inter-subunit interactions that regulate catalytic and force-generating events. Stepwise ATP binding to individual subunits increase their affinity for the helical DNA phosphate backbone, resulting in distortion away from the planar ring towards a helical configuration, inducing mechanical strain. Subsequent sequential hydrolysis events alleviate the accumulated mechanical strain, allowing a stepwise return of the motor to the planar conformation, translocating DNA in the process. This type of helical-to-planar mechanism could serve as a general framework for ring ATPases

    Substrate sequence selectivity of APOBEC3A implicates intra-DNA interactions

    Get PDF
    The APOBEC3 (A3) family of human cytidine deaminases is renowned for providing a first line of defense against many exogenous and endogenous retroviruses. However, the ability of these proteins to deaminate deoxycytidines in ssDNA makes A3s a double-edged sword. When overexpressed, A3s can mutate endogenous genomic DNA resulting in a variety of cancers. Although the sequence context for mutating DNA varies among A3s, the mechanism for substrate sequence specificity is not well understood. To characterize substrate specificity of A3A, a systematic approach was used to quantify the affinity for substrate as a function of sequence context, length, secondary structure, and solution pH. We identified the A3A ssDNA binding motif as (T/C)TC(A/G), which correlated with enzymatic activity. We also validated that A3A binds RNA in a sequence specific manner. A3A bound tighter to substrate binding motif within a hairpin loop compared to linear oligonucleotide, suggesting A3A affinity is modulated by substrate structure. Based on these findings and previously published A3A-ssDNA co-crystal structures, we propose a new model with intra-DNA interactions for the molecular mechanism underlying A3A sequence preference. Overall, the sequence and structural preferences identified for A3A leads to a new paradigm for identifying A3A\u27s involvement in mutation of endogenous or exogenous DNA
    corecore