A thermophilic phage uses a small terminase protein with a fixed helix-turn-helix geometry [preprint]

Abstract

Tailed bacteriophage use a DNA packaging motor to encapsulate their genome during viral particle assembly. The small terminase (TerS) component acts as a molecular matchmaker by recognizing the viral genome as well as the main motor component, the large terminase (TerL). How TerS binds DNA and the TerL protein remains unclear. Here, we identify the TerS protein of the thermophilic bacteriophage P74-26. TerSP76-26 oligomerizes into a nonamer that binds DNA, stimulates TerL ATPase activity, and inhibits TerL nuclease activity. Our cryo-EM structure shows that TerSP76-26 forms a ring with a wide central pore and radially arrayed helix-turn-helix (HTH) domains. These HTH domains, which are thought to bind DNA by wrapping the helix around the ring, are rigidly held in an orientation distinct from that seen in other TerS proteins. This rigid arrangement of the putative DNA binding domain imposes strong constraints on how TerSP76-26 can bind DNA. Finally, the TerSP76-26 structure lacks the conserved C-terminal β-barrel domain used by other TerS proteins for binding TerL, suggesting that a well-ordered C-terminal β-barrel domain is not necessary for TerS to carry out its function as a matchmaker

    Similar works