63 research outputs found

    Corny Matters

    Get PDF

    Interactant initiated status transfer

    Get PDF

    Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing

    Get PDF
    Metamaterials can be designed to operate at frequencies from the visible to the mid-IR, making these structures useful for both refractive index sensing and surface-enhanced infrared absorption spectroscopy. Here we investigate how the mechanical deformation of compliant metamaterials can be used to create new types of tunable sensing surfaces. For split ring resonator based metamaterials on polydimethylsiloxane we demonstrate refractive index sensing with figures of merit of up to 10.1. Given the tunability of the resonance of these structures through the infrared after fabrication, they are well suited for detection of the absorption signal of many typical vibrational modes. The results highlight the promise of postfabrication tunable sensors and the potential for integration

    Morphological Variation of Two Howler Monkey Species and their Genetically- Confirmed Hybrids.

    Full text link
    Hybridization challenges traditional species definitions, the most common being that a species comprises reproductively isolated individuals (Mayr, 1963). Although hybridization has been reported for several primate species, this dissertation is the first to investigate morphological variation in a Neotropical primate hybrid system. Two related howler monkey species, A. palliata and A. pigra, are known to hybridize in an area within Tabasco, Mexico. Using mitochondrial DNA, the SRY gene, and microsatellites, I identify hybrid individuals of different generations of crossbreeding and backcrossing to answer questions about hybrid morphology. What do hybrids look like when compared to purebred individuals? Is there a sex bias in the expression of hybrid morphology? I begin by comparing and contrasting the morphology of the two parent species and reporting how differences between them are shaped by differences in the extent of sexual selection. This will not only provide a basis for understanding the morphological variation present in hybrid individuals but also lay the groundwork for future research on the selective forces that hybrids are subject to. Therefore, the dissertation is comprised of three parts: 1) A review of the contributions of and the approaches used in the study of primate hybridization, 2) the impact of intra-sexual selection on sexual dimorphism and testes size in A. palliata and A. pigra, and 3) the morphology of hybrid versus purebred howler monkeys. My work sheds light on the range of variability in morphological expression when genetically distinctive populations crossbreed. It will also serve as a model for evaluating the issue of hybridization in the primate fossil record.Ph.D.AnthropologyUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91530/1/mkelaita_1.pd

    Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability

    Get PDF
    Metamaterial designs are typically limited to operation over a narrow bandwidth dictated by the resonant line width. Here we report a compliant metamaterial with tunability of Δλ ~ 400 nm, greater than the resonant line width at optical frequencies, using high-strain mechanical deformation of an elastomeric substrate to controllably modify the distance between the resonant elements. Using this compliant platform, we demonstrate dynamic surface-enhanced infrared absorption by tuning the metamaterial resonant frequency through a CH stretch vibrational mode, enhancing the reflection signal by a factor of 180. Manipulation of resonator components is also used to tune and modulate the Fano resonance of a coupled system

    FAST: A multi-processed environment for visualization of computational fluid

    Get PDF
    Three dimensional, unsteady, multizoned fluid dynamics simulations over full scale aircraft is typical of problems being computed at NASA-Ames on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10 to 30 Mflop range, it is felt that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These large, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this time. These visualization techniques will change as the supercomputing environment, and hence the scientific methods used, evolve ever further. Visualization of computational aerodynamics require flexible, extensible, and adaptable software tools for performing analysis tasks. FAST (Flow Analysis Software Toolkit), an implementation of a software system for fluid mechanics analysis that is based on this approach is discussed

    FAST: A multi-processed environment for visualization of computational fluid dynamics

    Get PDF
    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed

    Complete Coherent Control of a Quantum Dot Strongly Coupled to a Nanocavity

    Get PDF
    Strongly coupled quantum dot-cavity systems provide a non-linear configuration of hybridized light-matter states with promising quantum-optical applications. Here, we investigate the coherent interaction between strong laser pulses and quantum dot-cavity polaritons. Resonant excitation of polaritonic states and their interaction with phonons allow us to observe coherent Rabi oscillations and Ramsey fringes. Furthermore, we demonstrate complete coherent control of a quantum dot-photonic crystal cavity based quantum-bit. By controlling the excitation power and phase in a two-pulse excitation scheme we achieve access to the full Bloch sphere. Quantum-optical simulations are in good agreement with our experiments and provide insight into the decoherence mechanisms

    Ultrafast polariton-phonon dynamics of strongly coupled quantum dot-nanocavity systems

    Get PDF
    We investigate the influence of exciton-phonon coupling on the dynamics of a strongly coupled quantum dot-photonic crystal cavity system and explore the effects of this interaction on different schemes for non-classical light generation. By performing time-resolved measurements, we map out the detuning-dependent polariton lifetime and extract the spectrum of the polariton-to-phonon coupling with unprecedented precision. Photon-blockade experiments for different pulse-length and detuning conditions (supported by quantum optical simulations) reveal that achieving high-fidelity photon blockade requires an intricate understanding of the phonons' influence on the system dynamics. Finally, we achieve direct coherent control of the polariton states of a strongly coupled system and demonstrate that their efficient coupling to phonons can be exploited for novel concepts in high-fidelity single photon generation

    Scientific Visualization Using the Flow Analysis Software Toolkit (FAST)

    Get PDF
    Over the past few years the Flow Analysis Software Toolkit (FAST) has matured into a useful tool for visualizing and analyzing scientific data on high-performance graphics workstations. Originally designed for visualizing the results of fluid dynamics research, FAST has demonstrated its flexibility by being used in several other areas of scientific research. These research areas include earth and space sciences, acid rain and ozone modelling, and automotive design, just to name a few. This paper describes the current status of FAST, including the basic concepts, architecture, existing functionality and features, and some of the known applications for which FAST is being used. A few of the applications, by both NASA and non-NASA agencies, are outlined in more detail. Described in the Outlines are the goals of each visualization project, the techniques or 'tricks' used lo produce the desired results, and custom modifications to FAST, if any, done to further enhance the analysis. Some of the future directions for FAST are also described
    • …
    corecore