26 research outputs found

    TRANSPATH®—A High Quality Database Focused on Signal Transduction

    Get PDF
    TRANSPATH® can either be used as an encyclopedia, for both specific and general information on signal transduction, or can serve as a network analyser. Therefore, three modules have been created: the first one is the data, which have been manually extracted, mostly from the primary literature; the second is PathwayBuilder™, which provides several different types of network visualization and hence faciliates understanding; the third is ArrayAnalyzer™, which is particularly suited to gene expression array interpretation, and is able to identify key molecules within signalling networks (potential drug targets). These key molecules could be responsible for the coordinated regulation of downstream events. Manual data extraction focuses on direct reactions between signalling molecules and the experimental evidence for them, including species of genes/proteins used in individual experiments, experimental systems, materials and methods. This combination of materials and methods is used in TRANSPATH® to assign a quality value to each experimentally proven reaction, which reflects the probability that this reaction would happen under physiological conditions. Another important feature in TRANSPATH® is the inclusion of transcription factor–gene relations, which are transferred from TRANSFAC®, a database focused on transcription regulation and transcription factors. Since interactions between molecules are mainly direct, this allows a complete and stepwise pathway reconstruction from ligands to regulated genes. More information is available at www.biobase.de/pages/products/databases.html

    Beyond microarrays: Finding key transcription factors controlling signal transduction pathways

    Get PDF
    BACKGROUND: Massive gene expression changes in different cellular states measured by microarrays, in fact, reflect just an "echo" of real molecular processes in the cells. Transcription factors constitute a class of the regulatory molecules that typically require posttranscriptional modifications or ligand binding in order to exert their function. Therefore, such important functional changes of transcription factors are not directly visible in the microarray experiments. RESULTS: We developed a novel approach to find key transcription factors that may explain concerted expression changes of specific components of the signal transduction network. The approach aims at revealing evidence of positive feedback loops in the signal transduction circuits through activation of pathway-specific transcription factors. We demonstrate that promoters of genes encoding components of many known signal transduction pathways are enriched by binding sites of those transcription factors that are endpoints of the considered pathways. Application of the approach to the microarray gene expression data on TNF-alpha stimulated primary human endothelial cells helped to reveal novel key transcription factors potentially involved in the regulation of the signal transduction pathways of the cells. CONCLUSION: We developed a novel computational approach for revealing key transcription factors by knowledge-based analysis of gene expression data with the help of databases on gene regulatory networks (TRANSFAC(® )and TRANSPATH(®)). The corresponding software and databases are available at

    TRANSPATH(®): an information resource for storing and visualizing signaling pathways and their pathological aberrations

    Get PDF
    TRANSPATH(®) is a database about signal transduction events. It provides information about signaling molecules, their reactions and the pathways these reactions constitute. The representation of signaling molecules is organized in a number of orthogonal hierarchies reflecting the classification of the molecules, their species-specific or generic features, and their post-translational modifications. Reactions are similarly hierarchically organized in a three-layer architecture, differentiating between reactions that are evidenced by individual publications, generalizations of these reactions to construct species-independent ‘reference pathways’ and the ‘semantic projections’ of these pathways. A number of search and browse options allow easy access to the database contents, which can be visualized with the tool PathwayBuilder™. The module PathoSign adds data about pathologically relevant mutations in signaling components, including their genotypes and phenotypes. TRANSPATH(®) and PathoSign can be used as encyclopaedia, in the educational process, for vizualization and modeling of signal transduction networks and for the analysis of gene expression data. TRANSPATH(®) Public 6.0 is freely accessible for users from non-profit organizations under

    Walking pathways with positive feedback loops reveal DNA methylation

    Get PDF
    Background: the search for molecular biomarkers of early-onset colorectal cancer (CRC) is an important but still quite challenging and unsolved task. Detection of CpG methylation in human DNA obtained from blood or stool has been proposed as a promising approach to a noninvasive early diagnosis of CRC. Thousands of abnormally methylated CpG positions in CRC genomes are often located in non-coding parts of genes. Novel bioinformatic methods are thus urgently needed for multi-omics data analysis to reveal causative biomarkers with a potential driver role in early stages of cancer. Methods: we have developed a method for finding potential causal relationships between epigenetic changes (DNA methylations) in gene regulatory regions that affect transcription factor binding sites (TFBS) and gene expression changes. This method also considers the topology of the involved signal transduction pathways and searches for positive feedback loops that may cause the carcinogenic aberrations in gene expression. We call this method 'Walking pathways', since it searches for potential rewiring mechanisms in cancer pathways due to dynamic changes in the DNA methylation status of important gene regulatory regions ('epigenomic walking'). Results: in this paper, we analysed an extensive collection of full genome gene-expression data (RNA-seq) and DNA methylation data of genomic CpG islands (using Illumina methylation arrays) generated from a sample of tumor and normal gut epithelial tissues of 300 patients with colorectal cancer (at different stages of the disease) (data generated in the EU-supported SysCol project). Identification of potential epigenetic biomarkers of DNA methylation was performed using the fully automatic multi-omics analysis web service 'My Genome Enhancer' (MGE) (my-genome-enhancer.com). MGE uses the database on gene regulation TRANSFAC®, the signal transduction pathways database TRANSPATH®, and software that employs AI (artificial intelligence) methods for the analysis of cancer-specific enhancers. Conclusions: the identified biomarkers underwent experimental testing on an independent set of blood samples from patients with colorectal cancer. As a result, using advanced methods of statistics and machine learning, a minimum set of 6 biomarkers was selected, which together achieve the best cancer detection potential. The markers include hypermethylated positions in regulatory regions of the following genes: CALCA, ENO1, MYC, PDX1, TCF7, ZNF43

    Composite Module Analyst: A Fitness-Based Tool for Prediction of Transcription Regulation.

    No full text
    Abstract. Functionally related genes involved in the same molecular-genetic, biochemical, or physiological process are often regulated coordinately Such regulation is provided by precisely organized binding of a multiplicity of special proteins (transcription factors) to their target sites (cis-elements) in regulatory regions of genes. Cis-element combinations provide a structural basis for the generation of unique patterns of gene expression. Here we present a new approach for defining promoter models based on composition of transcription factor binding sites and their pairs. We utilize a multicomponent fitness function for selection of that promoter model fitting best to the observed gene expression profile. We demonstrate examples of successful application of the fitness function with the help of a genetic algorithm for the analysis of functionally related or co-expressed genes as well as testing on simulated data.

    TRANSCompel(®): a database on composite regulatory elements in eukaryotic genes

    Get PDF
    Originating from COMPEL, the TRANSCompel(®) database emphasizes the key role of specific interactions between transcription factors binding to their target sites providing specific features of gene regulation in a particular cellular content. Composite regulatory elements contain two closely situated binding sites for distinct transcription factors and represent minimal functional units providing combinatorial transcriptional regulation. Both specific factor–DNA and factor–factor interactions contribute to the function of composite elements (CEs). Information about the structure of known CEs and specific gene regulation achieved through such CEs appears to be extremely useful for promoter prediction, for gene function prediction and for applied gene engineering as well. Each database entry corresponds to an individual CE within a particular gene and contains information about two binding sites, two corresponding transcription factors and experiments confirming cooperative action between transcription factors. The COMPEL database, equipped with the search and browse tools, is available at http://www.gene-regulation.com/pub/databases.html#transcompel. Moreover, we have developed the program CATCH™ for searching potential CEs in DNA sequences. It is freely available as CompelPatternSearch at http://compel.bionet.nsc.ru/FunSite/CompelPatternSearch.html

    COMPEL: a database on composite regulatory elements providing combinatorial transcriptional regulation

    Get PDF
    COMPEL is a database on composite regulatory elements, the basic structures of combinatorial regulation. Composite regulatory elements contain two closely situated binding sites for distinct transcription factors and represent minimal functional units providing combinatorial transcriptional regulation. Both specific factor–DNA and factor–factor interactions contribute to the function of composite elements (CEs). Information about the structure of known CEs and specific gene regulation achieved through such CEs appears to be extremely useful for promoter prediction, for gene function prediction and for applied gene engineering as well. The structure of the relational model of COMPEL is determined by the concept of molecular structure and regulatory role of CEs. Based on the set of a particular CE, a program has been developed for searching potential CEs in gene regulatory regions. WWW search and browse routines were developed for COMPEL release 3.0. The COMPEL database equipped with the search and browse tools is available at http://compel.bionet.nsc.ru/ . The program for prediction of potential CEs of NFAT type is available at http://compel.bionet.nsc.ru/FunSite.html and http://transfac.gbf.de/dbsearch/funsitep/s_comp.htm

    244 Genome Informatics 15(2): 244–254 (2004) Consistent Re-Modeling of Signaling Pathways and Its Implementation in the TRANSPATHDatabase

    No full text
    The data model of the signaling pathways database TRANSPATH has been re-engineered to a three-layer model comprising experimental evidences and summarized pathway information, both in a mechanistically detailed manner, and a “semantic ” projection for the abstract overview. Each molecule is described in the context of a certain reaction in the multidimensional space of posttranslational modification, molecular family relationships, and the biological species of its origin. The new model makes the data better suitable for reconstructing signaling pathways and networks and mapping expression data, for instance from microarray experiments, onto regulatory networks
    corecore