5 research outputs found

    Use of copula to model within-study association in bivariate meta-analysis of binomial data at the aggregate level: A Bayesian approach and application to surrogate endpoint evaluation

    No full text
    Bivariate meta-analysis provides a useful framework for combining information across related studies and has been utilized to combine evidence from clinical studies to evaluate treatment efficacy on two outcomes. It has also been used to investigate surrogacy patterns between treatment effects on the surrogate endpoint and the final outcome. Surrogate endpoints play an important role in drug development when they can be used to measure treatment effect early compared to the final outcome and to predict clinical benefit or harm. The standard bivariate meta-analytic approach models the observed treatment effects on the surrogate and the final outcome outcomes jointly, at both the within-study and between-studies levels, using a bivariate normal distribution. For binomial data, a normal approximation on log odds ratio scale can be used. However, this method may lead to biased results when the proportions of events are close to one or zero, affecting the validation of surrogate endpoints. In this article, we explore modeling the two outcomes on the original binomial scale. First, we present a method that uses independent binomial likelihoods to model the within-study variability avoiding to approximate the observed treatment effects. However, the method ignores the within-study association. To overcome this issue, we propose a method using a bivariate copula with binomial marginals, which allows the model to account for the within-study association. We applied the methods to an illustrative example in chronic myeloid leukemia to investigate the surrogate relationship between complete cytogenetic response and event-free-survival

    Modeling the multi‐state natural history of rare diseases with heterogeneous individual patient data: A simulation study

    No full text
    Multi‐state survival models are used to represent the natural history of a disease, forming the basis of a health technology assessment comparing a novel treatment to current practice. Constructing such models for rare diseases is problematic, since evidence sources are typically much sparser and more heterogeneous. This simulation study investigated different one‐stage and two‐stage approaches to meta‐analyzing individual patient data (IPD) in a multi‐state survival setting when the number and size of studies being meta‐analyzed are small. The objective was to assess methods of different complexity to see when they are accurate, when they are inaccurate and when they struggle to converge due to the sparsity of data. Biologically plausible multi‐state IPD were simulated from study‐ and transition‐specific hazard functions. One‐stage frailty and two‐stage stratified models were estimated, and compared to a base case model that did not account for study heterogeneity. Convergence and the bias/coverage of population‐level transition probabilities to, and lengths of stay in, each state were used to assess model performance. A real‐world application to Duchenne Muscular Dystrophy, a neuromuscular rare disease, was conducted, and a software demonstration is provided. Models not accounting for study heterogeneity were consistently out‐performed by two‐stage models. Frailty models struggled to converge, particularly in scenarios of low heterogeneity, and predictions from models that did converge were also subject to bias. Stratified models may be better suited to meta‐analyzing disparate sources of IPD in rare disease natural history/economic modeling, as they converge more consistently and produce less biased predictions of lengths of stay.</p

    Bayesian network meta-analysis methods for combining individual participant data and aggregate data from single arm trials and randomised controlled trials

    No full text
    Background: Increasingly in network meta-analysis (NMA), there is a need to incorporate non-randomised evidence to estimate relative treatment effects, and in particular in cases with limited randomised evidence, sometimes resulting in disconnected networks of treatments. When combining different sources of data, complex NMA methods are required to address issues associated with participant selection bias, incorporating single-arm trials (SATs), and synthesising a mixture of individual participant data (IPD) and aggregate data (AD). We develop NMA methods which synthesise data from SATs and randomised controlled trials (RCTs), using a mixture of IPD and AD, for a dichotomous outcome. Methods: We propose methods under both contrast-based (CB) and arm-based (AB) parametrisations, and extend the methods to allow for both within- and across-trial adjustments for covariate effects. To illustrate the methods, we use an applied example investigating the effectiveness of biologic disease-modifying anti-rheumatic drugs for rheumatoid arthritis (RA). We applied the methods to a dataset obtained from a literature review consisting of 14 RCTs and an artificial dataset consisting of IPD from two SATs and AD from 12 RCTs, where the artificial dataset was created by removing the control arms from the only two trials assessing tocilizumab in the original dataset. Results: Without adjustment for covariates, the CB method with independent baseline response parameters (CBunadjInd) underestimated the effectiveness of tocilizumab when applied to the artificial dataset compared to the original dataset, albeit with significant overlap in posterior distributions for treatment effect parameters. The CB method with exchangeable baseline response parameters produced effectiveness estimates in agreement with CBunadjInd, when the predicted baseline response estimates were similar to the observed baseline response. After adjustment for RA duration, there was a reduction in across-trial heterogeneity in baseline response but little change in treatment effect estimates. Conclusions: Our findings suggest incorporating SATs in NMA may be useful in some situations where a treatment is disconnected from a network of comparator treatments, due to a lack of comparative evidence, to estimate relative treatment effects. The reliability of effect estimates based on data from SATs may depend on adjustment for covariate effects, although further research is required to understand this in more detail

    United Kingdom Research study into Ethnicity And COVID-19 outcomes in Healthcare workers (UK-REACH): a retrospective cohort study using linked routinely collected data, study protocol.

    Get PDF
    Introduction: COVID-19 has spread rapidly worldwide, causing significant morbidity and mortality. People from ethnic minorities, particularly those working in healthcare settings, have been disproportionately affected. Current evidence of the association between ethnicity and COVID-19 outcomes in people working in healthcare settings is insufficient to inform plans to address health inequalities. Methods and analysis: This study combines anonymised human resource databases with professional registration and National Health Service data sets to assess associations between ethnicity and COVID-19 diagnosis, hospitalisation and death in healthcare workers in the UK. Adverse COVID-19 outcomes will be assessed between 1 February 2020 (date following first confirmed COVID-19 case in UK) and study end date (31 January 2021), allowing 1-year of follow-up. Planned analyses include multivariable Poisson, logistic and flexible parametric time-to-event regression within each country, adjusting for core predictors, followed by meta-analysis of country-specific results to produce combined effect estimates for the UK. Mediation analysis methods will be explored to examine the direct, indirect and mediated interactive effects between ethnicity, occupational group and COVID-19 outcomes. Ethics and dissemination: Ethical approval for the UK-REACH programme has been obtained via the expedited HRA COVID-19 processes (REC ref: 20/HRA/4718, IRAS ID: 288316). Research information will be anonymised via the Secure Anonymised Information Linkage Databank before release to researchers. Study results will be submitted for publication in an open access peer-reviewed journal and made available on our dedicated website (https://uk-reach.org/). Trial registration number: ISRCTN11811602.</p

    Effect of Transcatheter Aortic Valve Implantation vs Surgical Aortic Valve Replacement on All-Cause Mortality in Patients With Aortic Stenosis: A Randomized Clinical Trial.

    Full text link
    ImportanceTranscatheter aortic valve implantation (TAVI) is a less invasive alternative to surgical aortic valve replacement and is the treatment of choice for patients at high operative risk. The role of TAVI in patients at lower risk is unclear.ObjectiveTo determine whether TAVI is noninferior to surgery in patients at moderately increased operative risk.Design, setting, and participantsIn this randomized clinical trial conducted at 34 UK centers, 913 patients aged 70 years or older with severe, symptomatic aortic stenosis and moderately increased operative risk due to age or comorbidity were enrolled between April 2014 and April 2018 and followed up through April 2019.InterventionsTAVI using any valve with a CE mark (indicating conformity of the valve with all legal and safety requirements for sale throughout the European Economic Area) and any access route (n = 458) or surgical aortic valve replacement (surgery; n = 455).Main outcomes and measuresThe primary outcome was all-cause mortality at 1 year. The primary hypothesis was that TAVI was noninferior to surgery, with a noninferiority margin of 5% for the upper limit of the 1-sided 97.5% CI for the absolute between-group difference in mortality. There were 36 secondary outcomes (30 reported herein), including duration of hospital stay, major bleeding events, vascular complications, conduction disturbance requiring pacemaker implantation, and aortic regurgitation.ResultsAmong 913 patients randomized (median age, 81 years [IQR, 78 to 84 years]; 424 [46%] were female; median Society of Thoracic Surgeons mortality risk score, 2.6% [IQR, 2.0% to 3.4%]), 912 (99.9%) completed follow-up and were included in the noninferiority analysis. At 1 year, there were 21 deaths (4.6%) in the TAVI group and 30 deaths (6.6%) in the surgery group, with an adjusted absolute risk difference of -2.0% (1-sided 97.5% CI, -∞ to 1.2%; P Conclusions and relevanceAmong patients aged 70 years or older with severe, symptomatic aortic stenosis and moderately increased operative risk, TAVI was noninferior to surgery with respect to all-cause mortality at 1 year.Trial registrationisrctn.com Identifier: ISRCTN57819173
    corecore