73 research outputs found

    The Shiga toxin 2 production level in enterohemorrhagic Escherichia coli O157:H7 is correlated with the subtypes of toxin-encoding phage

    Get PDF
    Enterohemorrhagic E. coli (EHEC) causes diarrhea and hemorrhagic colitis with life-threatening complications, such as hemolytic uremic syndrome. Their major virulence factor is Shiga toxin (Stx), which is encoded by bacteriophages. Of the two types of Stx, the production of Stx2, particularly that of Stx2a (a subtype of Stx2), is a major risk factor for severe EHEC infections, but the Stx2 production level is highly variable between strains. Here, we define four major and two minor subtypes of Stx2a-encoding phages according to their replication proteins. The subtypes are correlated with Stx2a titers produced by the host O157 strains, suggesting a critical role of the phage subtype in determining the Stx2a production level. We further show that one of the two subclades in the clade 8, a proposed hyper-virulent lineage of O157, carries the Stx2 phage subtype that confers the highest Stx2 production to the host strain. The presence of this subclade may explain the proposed high virulence potential of clade 8. These results provide novel insights into the variation in virulence among O157 strains and highlight the role of phage variation in determining the production level of the virulence factors that phages encode

    Spin chirality and electric polarization in multiferroic compounds RRMn2_2O5_5 (R=R=Ho, Er)

    Full text link
    Polarized neutron diffraction experiments have been performed on multiferroic materials RRMn2_{2}O5_{5} (R=R=Ho, Er) under electric fields in the ferroelectric commensurate (CM) and the low-temperature incommensurate (LT-ICM) phases, where the former has the highest electric polarization and the latter has reduced polarization. It is found that, after cooling in electric fields down to the CM phase, the magnetic chirality is proportional to the electric polarization. Also we confirmed that the magnetic chirality can be switched by the polarity of the electric polarization in both the CM and LT-ICM phases. These facts suggest an intimate coupling between the magnetic chirality and the electric polarization. However, upon the transition from the CM to LT-ICM phase, the reduction of the electric polarization is not accompanied by any reduction of the magnetic chirality, implying that the CM and LT-ICM phases contain different mechanisms of the magnetoelectric coupling.Comment: 4 pages, 2 figures. Proceedings of PNCMI2008/QuBS200

    A complete view of the genetic diversity of the Escherichia coli O-antigen biosynthesis gene cluster.

    Get PDF
    The O antigen constitutes the outermost part of the lipopolysaccharide layer in Gram-negative bacteria. The chemical composition and structure of the O antigen show high levels of variation even within a single species revealing itself as serological diversity. Here, we present a complete sequence set for the O-antigen biosynthesis gene clusters (O-AGCs) from all 184 recognized Escherichia coli O serogroups. By comparing these sequences, we identified 161 well-defined O-AGCs. Based on the wzx/wzy or wzm/wzt gene sequences, in addition to 145 singletons, 37 serogroups were placed into 16 groups. Furthermore, phylogenetic analysis of all the E. coli O-serogroup reference strains revealed that the nearly one-quarter of the 184 serogroups were found in the ST10 lineage, which may have a unique genetic background allowing a more successful exchange of O-AGCs. Our data provide a complete view of the genetic diversity of O-AGCs in E. coli showing a stronger association between host phylogenetic lineage and O-serogroup diversification than previously recognized. These data will be a valuable basis for developing a systematic molecular O-typing scheme that will allow traditional typing approaches to be linked to genomic exploration of E. coli diversity

    Seasonal Changes in the Plant Growth-Inhibitory Effects of Rosemary Leaves on Lettuce Seedlings

    Get PDF
    Plant biodiversity has been studied to explore allelopathic species for the sustainable management of weeds to reduce the reliance on synthetic herbicides. Rosemary (Rosmarinus officinalis L., syn Salvia rosmarinus Spenn.), was found to have plant growth-inhibitory effects, and carnosic acid was reported as an allelochemical in the plant. In this study, the effects of seasonal variation (2011–2012) on the carnosic acid concentration and phytotoxicity of rosemary leaves from two locations in Tunisia (Fahs and Matmata) were investigated. The carnosic acid concentration in rosemary leaves was determined by HPLC, and lettuce (Lactuca sativa L.) was used as the receptor plant in the phytotoxicity bioassay. The highest carnosic acid concentration was found in rosemary samples collected in June 2011, which also had the highest inhibitory activity. Furthermore, a significant inverse correlation (r = −0.529; p < 0.01) was found between the inhibitory activity on lettuce hypocotyl and the carnosic acid concentration in rosemary leaves. Both temperature and elevation had a significant positive correlation with carnosic acid concentration, while rainfall showed a negative correlation. The results showed that the inhibitory effects of rosemary leaf samples collected in summer was highest due to their high carnosic acid concentration. The phytotoxicity of rosemary needs to be studied over time to determine if it varies by season under field conditions.Peer Reviewe
    • …
    corecore