51 research outputs found

    Identification of amino acids in antigen-binding site of class II HLA proteins independently associated with hepatitis B vaccine response

    Get PDF
    Background & aimsGenetic factors in class II human leukocyte antigen (HLA) have been reported to be associated with inter-individual variation in hepatitis B virus (HBV) vaccine response. However, the mechanism underlying the associations remains elusive. In particular, the broad linkage disequilibrium in HLA region complicates the localization of the independent effects of genetic variants. Thus, the present study aimed to identify the most probable causal variations in class II HLA loci involved in the immune response to HBV vaccine.MethodsWe performed a case-control study to assess whether HLA-DRB1, -DQB1, and -DPB1 4-digit alleles were associated with the response to primary HBV vaccination in 574 healthy Japanese students. To identify causative variants, we next assessed independently associated amino acid variants in these loci using conditional logistic regression analysis. Furthermore, to clarify the functional effects of these variants on HLA proteins, we performed computational structural studies.ResultsHLA-DRB1∗01:01, HLA-DRB1∗08:03, HLA-DQB1∗05:01, and HLA-DPB1∗04:02 were significantly associated with sufficient response, whereas HLA-DPB1∗05:01 was associated with poor response. We then identified amino acids independently associated with sufficient response, namely, leucine at position 26 of HLA-DRβ1 and glycine-glycine-proline-methionine at positions 84–87 of HLA-DPβ1. These amino acids were located in antigen-binding pocket 4 of HLA-DR and pocket 1 of HLA-DP, respectively, which are important structures for selective binding of antigenic peptides. In addition, the detected variations in HLA-DP protein were responsible for the differences in the electrostatic potentials of the pocket, which can explain in part the sufficient/poor vaccine responses.ConclusionHLA-DRβ1 position 26 and HLA-DPβ1 positions 84–87 are independently associated with anti-HBs production against HBV vaccine. Our results suggest that HBsAg presentation through these HLA pocket structures plays an important role in the inter-individual variability of HBV vaccination

    Clinical significance of Virtual touch quantification in acute hepatitis

    No full text

    Supplementation with Branched-Chain Amino Acids Induces Unexpected Deleterious Effects on Astrocyte Survival and Intracellular Metabolism with or without Hyperammonemia: A Preliminary In Vitro Study

    No full text
    Introduction. Ammonia is a key component in the pathogenesis of hepatic encephalopathy. Branched-chain amino acids (BCAA) have been reported to improve the symptoms of HE induced by hyperammonemia; however, we recently reported that ammonia increases intracellular levels of BCAA and exerts toxic effects on astrocytes. Objectives. This follow-up study was designed to confirm the direct effects of BCAA on human astrocytes and clarify their underlying mechanisms using metabolome analysis and evaluation of associated signaling. Methods. We performed cytotoxicity and cell proliferation tests on astrocytes following BCAA treatment with and without ammonium chloride (NH4Cl) and then compared the results with the effects of BCAA on hepatocytes and neurons. Subsequently, we used metabolomic analysis to investigate intracellular metabolite levels in astrocytes with and without BCAA treatment. Results. The astrocytes showed increased leakage of intracellular lactate dehydrogenase and reduced proliferation rate upon BCAA treatment. Interestingly, our analysis showed a BCAA-induced impairment of intracellular glycolysis/glyconeogenesis as well as amino acid and butyric acid metabolism. Furthermore, BCAA treatment was found to cause decreased levels of Glut-1 and phosphorylated GSK-3β and mTOR in astrocytes. Conclusions. Although further investigations of the effect of BCAA on human astrocytes with hyperammonemia are needed, our work demonstrates that BCAA supplementation has direct negative effects on astrocyte survival and intracellular metabolism
    corecore