158 research outputs found
Solution-processed amorphous niobium oxide as a novel electron collection layer for inverted polymer solar cells
Amorphous niobium oxide (NbOx) as an electron collection layer in inverted polymer solar cells was prepared by a solution process. The power conversion efficiency of inverted polymer solar cells based on a blend of poly(3-hexylthiophene) and [6,6]-phenyl C61 butyric acid methyl ester was improved to 2.22% by inserting an NbOx layer between the active layer and indium tin oxide electrode. An energy level diagram of component materials in the inverted polymer solar cell indicated that the NbOx layer works as both an electron collection layer and hole blocking layer in polymer solar cells
Emergence of metallic surface states and negative differential conductance in thin -FeSi films on Si(001)
The electronic properties of the surface of -FeSi have been
debated for a long while. We studied the surface states of -FeSi
films grown on Si(001) substrates using scanning tunnelling microscopy (STM)
and spectroscopy (STS), with the aid of density functional theory (DFT)
calculations. STM simulations using the surface model proposed by Romanyuk et
al. [Phys. Rev. B 90, 155305 (2014)] reproduce the detailed features of
experimental STM images. The result of STS showed metallic surface states in
accordance with theoretical predictions. The Fermi level was pinned by a
surface state that appeared in the bulk band gap of the -FeSi film,
irrespective of the polarity of the substrate. We also observed negative
differential conductance at 0.45 eV above the Fermi level in STS
measurements performed at 4.5 K, reflecting the presence of an energy gap in
the unoccupied surface states of -FeSi.Comment: 16 pages, 5 figure
Epitaxial graphene on SiC formed by the surface structure control technique
The thermal decomposition of silicon carbide (SiC) is a promising method for producing wafer-scale single-crystal graphene. The optimal growth condition for high-mobility epitaxial graphene fabricated by infrared rapid thermal annealing is discussed in this paper. The surface structures, such as step-terrace and graphene coverage structures, on a non-off-axis SiC(0001) substrate were well controlled by varying the annealing time in a range below 10 min. The mobility of graphene grown at 1620 ºC for 5 min in 100 Torr Ar ambient had a maximum value of 2089 cm2V-1s-1. We found that the causes of the mobility reduction were low graphene coverage, high sheet carrier density, and nonuniformity of the step structure
High Thermal Conductivity in Wafer Scale Cubic Silicon Carbide Crystals
High thermal conductivity electronic materials are critical components for
high-performance electronic and photonic devices as either active functional
materials or thermal management materials. We report an isotropic high thermal
conductivity over 500 W m-1K-1 at room temperature in high-quality wafer-scale
cubic silicon carbide (3C-SiC) crystals, which is the second highest among
large crystals (only surpassed by diamond). Furthermore, the corresponding
3C-SiC thin films are found to have record-high in-plane and cross-plane
thermal conductivity, even higher than diamond thin films with equivalent
thicknesses. Our results resolve a long-lasting puzzle that the literature
values of thermal conductivity for 3C-SiC are perplexingly lower than the
structurally more complex 6H-SiC. Further analysis reveals that the observed
high thermal conductivity in this work arises from the high purity and high
crystal quality of 3C-SiC crystals which excludes the exceptionally strong
defect-phonon scatterings in 3C-SiC. Moreover, by integrating 3C-SiC with other
semiconductors by epitaxial growth, we show that the measured 3C-SiC-Si TBC is
among the highest for semiconductor interfaces. These findings not only provide
insights for fundamental phonon transport mechanisms, also suggest that 3C-SiC
may constitute an excellent wide-bandgap semiconductor for applications of
power electronics as either active components or substrates
Clarifying Demographic Impacts on Embodied and Materially Retained Carbon toward Climate Change Mitigation
Modern lifestyles demand a number of products derived from petroleum-based sources that eventually cause carbon emissions. The quantification of lifestyle and household consumption impacts upon carbon emissions from both the embodied CO2 (EC) and materially retained carbon (MRC) viewpoints is critical to deriving amelioration policies and meeting emission reduction goals.This study, for the first time, details a methodology to estimate both EC and MRC for Japan, focusing on petrochemicals and woody products utilizing the time series input-output table, physical value tables and the national survey of family income and expenditure, leveraging time series input-output-based material flow analysis (IO-MFA), and structural decomposition analysis (SDA).Findings elucidated hot spots of deleterious consumption by age of householder and the critical factors which underpin them including intensity effects, pattern effects, and demographic shifts over time. Although demographic shifts associated with an aging,shrinking population in Japan decreased EC and MRC, the negative effect reduced in size over time during 1990?2005. Policy implications identify the potential to mitigate approximately 21% of required household emission reductions by 2030 through strategies including recycling initiatives and the recovery of carbon from products covered within current recycling laws and hot spot sectors which are not currently considered such as apparel
Gastric T-cell lymphoma associated with hemophagocytic syndrome
BACKGROUND: Lymphoma-associated hemophagocytic syndrome (LAHS) occurs in mostly extra nodal non-Hodgkin's lymphoma. LAHS arising from gastrointestinal lymphoma has never been reported. Here we report a case of gastric T-cell lymphoma-associated hemophagocytic syndrome. CASE PRESENTATION: A 51-year-old woman presented with pain, redness of breasts, fever and hematemesis. Hematological examination revealed anemia. Gastroscopy revealed small bleeding ulcers in the stomach and the computed tomography scan showed liver tumor. She underwent total gastrectomy for gastrointestinal bleeding and the histopathology revealed gastric T-cell lymphoma. She continued to bleed from the anastomosis and died on the 8th postoperative day. Autopsy revealed it to be a LAHS. CONCLUSIONS: If Hemophagocytic syndrome (HPS) occurs in lymphoma of the gastrointestinal tract, bleeding from the primary lesion might be uncontrollable. Early diagnosis and appropriate treatment are needed for long-term survival
Significance of measurement of tumor marker in primary breast cancer
We investigated a prognosis in the presence or absence of preoperative marker abnormality for 371 cases with primary breast cancer that we experienced in our department this time. 60 (16%) of 371 cases showed the abnormality of the tumor marker and 25 (41.7%) of 60 patients had a recurrence. The positive rate of the marker was 8.1% in CA 15 3, 6.7% in CEA, 4.1% in NCC ST 439, and each rate of recurrence was 56.7%, 48.0%, 33.3%. Rate of recurrence in the negative cases was 12.7%, 13.9, 15.0% respectively and recognized a significant difference statistically (p <0.001) . Of 11 cases (3.8%) shown CA 15 3 abnormal high level, 3 cases (27.2%) had recurrence when we examined in 0 3 metastases to lymph nodes according to markers. 281 cases (96.2%) was normal range in CA15 3. Only 15 cases (5%) had recurrence. It showed a significant difference statistically (p <0.05) . For the cases shown abnormality of the preoperative CA 15 3, careful serial observations are necessary
Characteristics of Vertical Transistors on a GaN Substrate Fabricated via Na-Flux Method and Enlargement of the Substrate Surpassing 6 Inches
Imanishi M., Usami S., Murakami K., et al. Characteristics of Vertical Transistors on a GaN Substrate Fabricated via Na-Flux Method and Enlargement of the Substrate Surpassing 6 Inches. Physica Status Solidi - Rapid Research Letters, (2024); https://doi.org/10.1002/pssr.202400106.The Na-flux method is expected to be a key GaN growth technique for obtaining ideal bulk GaN crystals. Herein, the structural quality of the latest GaN crystals grown using the Na-flux method and, for the first time, the characteristics of a vertical transistor fabricated on a GaN substrate grown using this method are discussed. Vertical transistors exhibit normally off operation with a gate voltage threshold exceeding 2 V and a maximum drain current of 3.3 A during the on-state operation. Additionally, it demonstrates a breakdown voltage exceeding 600 V and a low leakage current during off-state operation. It is also described that the variation in the on-resistance can be minimized using GaN substrates with minimal off-angle variations. This is crucial for achieving the large-current chips required for future demonstration of actual devices. In addition, the reverse I–V characteristics of the parasitic p–n junction diode (PND) structures indicate a reduction in the number of devices with a significant leakage current compared to commercially available GaN substrates. Finally, a circular GaN substrate with a diameter of 161 mm, surpassing 6 inches, grown using the Na-flux method is demonstrated, making it the largest GaN substrate aside from those produced through the tiling technique
ハイヨウセイ キン イシュク オ フセグ コウユビキチンカ ペプチド Cblin Cbl-b inhibitor ノ コウキノウカ
Skeletal muscle atrophy caused by unloading is characterized by both decreased responsiveness to myogenic growth factors and increased proteolysis. In our previous studies, it has been shown that ubiquitin ligase Cbl-b interacted and degraded the IGF-1 signaling intermediate IRS-1. We also reported that a peptide mimetic of tyrosin608-phosphorylated IRS-1 (DGpYMP), named Cblin, Cbl-b inhibitor. However, Cblin may tend to be degraded by aminopeptidase in vivo. We aimed to confirm whether Cblin inhibiter muscle atrophy caused by glucocorticoids in mouse C2C12 myotubes, and effects of the modified Cblin N-terminus to prevent it from degradation. Pretreatment with Cblin significantly prevented the decrease in diameters of C2C12 myotubes treated with dexamethasone, and IRS-1 degradation, expression of atrogenes mRNA was repressed, and phosphorylation of Akt/mTOR was also protected. Moreover, the 50% inhibitory concentration of N -myristoylated Cblin and Cblin for Cbl-b-mediated IRS-1 ubiquitination was 35μM and 120μM, respectively. In addition, N -myristoylated Cblin significantly inhibited the dexamethasone-induced reduction of myotube diameter. Taken together, these results suggest that Cblin Cblin prevented the dexamethasone induced myotube atrophy, and N -myristoyled Cblin is more effective than nonmodified Cblin in prevention of muscle atrophy
- …