4 research outputs found

    Headspace Solid-Phase Micro-Extraction Method Optimization and Evaluation for the Volatile Compound Extraction of Bronchoalveolar Lung Lavage Fluid Samples

    No full text
    Headspace solid-phase micro-extraction (HS-SPME) is a prevalent technique in metabolomics and volatolomics research. However, the performance of HS-SPME can vary considerably depending on the sample matrix. As a result, fine-tuning the parameters for each specific sample matrix is crucial to maximize extraction efficacy. In this context, we conducted comprehensive HS-SPME optimization for bronchoalveolar lavage fluid (BALF) samples using two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-ToFMS). Our exploration spanned several HS-SPME parameters, including vial size, dilution factor, extraction time, extraction temperature, and ionic strength. The 10 mL vial size, no sample dilution, extraction time of 50 min, extraction temperature of 45 °C, and 40% salt were identified as the optimized parameters. The optimized method was then evaluated by a pair-wise comparison of ten sets of samples. The results revealed that the optimized method yielded an increase of 340% in total peak area and an increase of 80% in total peak number. Moreover, enhancements were observed across nine major chemical classes in both peak area and number. Notably, the optimized method also doubled the number of volatile compounds consistently detected across BALF samples, from 52 to 108.Applied Science, Faculty ofNon UBCChemical and Biological Engineering, Department ofReviewedFacult

    A Rapid and Quantitative Serum Test for SARS-CoV-2 Antibodies with Portable Surface Plasmon Resonance Sensing

    No full text
    We report a surface plasmon resonance (SPR) sensor detecting nucleocapsid antibodies specific against the novel coronavirus 2019 (SARS-CoV-2) in undiluted human serum. When exposed to SARS-CoV-2, the immune system responds by expressing antibodies at levels that can be detected and monitored to identify the patient population immunized against SARD-CoV-2 and support efforts to deploy a vaccine strategically. A SPR sensor coated with a peptide monolayer and functionalized with SARS-CoV-2 nucleocapsid recombinant protein detected anti-SARS-CoV-2 antibodies in the nanomolar range. This bioassay was performed on a portable SPR instrument in undiluted human serum and results were collected within 15 minutes of sample/sensor contact. This strategy paves the way to point-of-care and label-free rapid testing for antibodies

    Cross-Validation of ELISA and a Portable Surface Plasmon Resonance Instrument for IgG Antibodies Serology with SARS-CoV-2 Positive Individuals

    No full text
    We report on the development of surface plasmon resonance (SPR) sensors and matching ELISAs for the detection of nucleocapsid and spike antibodies specific against the novel coronavirus 2019 (SARS-CoV-2) in human serum, plasma and dried blood spots (DBS). When exposed to SARS-CoV-2 or a vaccine against SARS-CoV-2, the immune system responds by expressing antibodies at levels that can be detected and monitored to identify the fraction of the population potentially immunized against SARS-CoV-2 and support efforts to deploy a vaccine strategically. A SPR sensor coated with a peptide monolayer and functionalized with various sources of SARS-CoV-2 recombinant proteins expressed in different cell lines detected human anti-SARS-CoV-2 IgG in the nanomolar range. Nucleocapsid expressed in different cell lines did not significantly change the sensitivity of the assays, whereas the use of a CHO cell line to express spike ectodomain led to excellent performance. This bioassay was performed on a portable SPR instrument capable of measuring 4 biological samples within 30 minutes of sample/sensor contact and the chip could be regenerated at least 9 times. Multi-site validation was then performed with in-house and commercial ELISA, which revealed excellent cross-correlations with Pearson’s coefficients exceeding 0.85 in all cases, for measurements in DBS and plasma. This strategy paves the way to point-of-care and rapid testing for antibodies in the context of viral infection and vaccine efficacy monitoring
    corecore