7,179 research outputs found
The cytolytic T lymphocyte response to the murine cytomegalovirus
Limiting dilution (LD) analysis with two modifications, the expansion and the restimulation LD assay, led to the detection and quantification of two distinct in vivo maturation stages within the lineage of virus- specific self-restricted CTL after infection of mice with the murine cytomegalovirus (MCMV). A low frequency set, representing an average of 15% of the specifically activated CTL-P in a draining lymph node, generated virus-specific lytic activity in the absence of antigen, solely under expansion conditions provided by growth and differentiation interleukins. These cells were considered to be active and were denoted antigen-independent or interleukin-receptive CTL-P (IL- CTL-P). A high frequency set required additional antigen in vitro to generate functionally active clones, and therefore the cells were termed antigen-dependent. Both sets are present in vivo simultaneously at the peak of the acute immune response and represent antigen- activated cells because their existence strictly depends on a preceding priming event. IL-CTL-P disappear quickly after acute infection and are absent during the memory state. It is proposed that the isolation of IL- CTL-P could serve to detect viral antigen expression during persistent and/or recurrent herpes virus infections
Nonperturbative analysis of coupled quantum dots in a phonon bath
Transport through coupled quantum dots in a phonon bath is studied using the
recently developed real-time renormalization-group method. Thereby, the problem
can be treated beyond perturbation theory regarding the complete interaction. A
reliable solution for the stationary tunnel current is obtained for the case of
moderately strong couplings of the dots to the leads and to the phonon bath.
Any other parameter is arbitrary, and the complete electron-phonon interaction
is taken into account. Experimental results are quantitatively reproduced by
taking into account a finite extension of the wavefunctions within the dots.
Its dependence on the energy difference between the dots is derived.Comment: 8 pages, 6 figure
Studies on the Morphogenesis of Murine Cytomegalovirus
Two modes of assembly of murine cytomegalovirus (MCMV) were observed in cultured mouse embryo fïbroblasts, generating two morphologically different types of viral particles: monocapsid virions and multicapsid virions. The assembly of nucleocapsids appeared to be the same for both types of morphogenesis. Three successive stages of intranuclear capsid formation could be distinguished: capsids with electron-lucent cores, coreless capsids, and capsids with dense cores. Some of the capsids were enveloped at the inner nuclear membrane to form monocapsid virions, which were first detectable in the perinuclear cisterna. Other capsids left the nucleus via nuclear pores and usually entered cytoplasmic capsid aggregates that received an envelope by budding into extended cytoplasmic vacuoles, thereby forming multicapsid virions. Since the formation of multicapsid virions is not restricted to cell culture conditions and also occurs in vivo in immunosuppressed mice, multicapsid virions may play a role in the pathogenesis of cytomegalovirus infection
Host immune response to cytomegalovirus
To confirm that immediate-early (IE) genes of murine cytomegalovirus (MCMV) give rise to antigens recognized by specific cytolytic T lymphocytes (CTL), a 10.8-kilobase fragment of MCMV DNA which is abundantly transcribed at IE times was transfected into L cells expressing the Ld class I major histocompatibility glycoprotein. The viral genome fragment contains sequences of the three IE transcription units of MCMV: ie1, ie2, and ie3. In the transfected cell lines, only the predominant 2.75-kilobase transcript of ie1 and its translation product pp89 could be detected. The transfectants were analyzed for membrane expression of an IE antigen by employing clone IE1, an IE-specific CTL clone, as the probe. Only cells that expressed both the MCMV IE gene(s) and the Ld gene were recognized by the CTL clone
Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective
In this work, we investigate the adsorption of a single cobalt atom (Co) on
graphene by means of the complete active space self-consistent field approach,
additionally corrected by the second-order perturbation theory. The local
structure of graphene is modeled by a planar hydrocarbon cluster
(CH). Systematic treatment of the electron correlations and the
possibility to study excited states allow us to reproduce the potential energy
curves for different electronic configurations of Co. We find that upon
approaching the surface, the ground-state configuration of Co undergoes several
transitions, giving rise to two stable states. The first corresponds to the
physisorption of the adatom in the high-spin ()
configuration, while the second results from the chemical bonding formed by
strong orbital hybridization, leading to the low-spin () state.
Due to the instability of the configuration, the adsorption energy of Co
is small in both cases and does not exceed 0.35 eV. We analyze the obtained
results in terms of a simple model Hamiltonian that involves Coulomb repulsion
() and exchange coupling () parameters for the 3 shell of Co, which we
estimate from first-principles calculations. We show that while the exchange
interaction remains constant upon adsorption ( eV), the Coulomb
repulsion significantly reduces for decreasing distances (from 5.3 to
2.60.2 eV). The screening of favors higher occupations of the 3
shell and thus is largely responsible for the interconfigurational transitions
of Co. Finally, we discuss the limitations of the approaches that are based on
density functional theory with respect to transition metal atoms on graphene,
and we conclude that a proper account of the electron correlations is crucial
for the description of adsorption in such systems.Comment: 12 pages, 6 figures, 2 table
Interfacial interactions between local defects in amorphous SiO and supported graphene
We present a density functional study of graphene adhesion on a realistic
SiO surface taking into account van der Waals (vdW) interactions. The
SiO substrate is modeled at the local scale by using two main types of
surface defects, typical for amorphous silica: the oxygen dangling bond and
three-coordinated silicon. The results show that the nature of adhesion between
graphene and its substrate is qualitatively dependent on the surface defect
type. In particular, the interaction between graphene and silicon-terminated
SiO originates exclusively from the vdW interaction, whereas the
oxygen-terminated surface provides additional ionic contribution to the binding
arising from interfacial charge transfer (-type doping of graphene). Strong
doping contrast for the different surface terminations provides a mechanism for
the charge inhomogeneity of graphene on amorphous SiO observed in
experiments. We found that independent of the considered surface morphologies,
the typical electronic structure of graphene in the vicinity of the Dirac point
remains unaltered in contact with the SiO substrate, which points to the
absence of the covalent interactions between graphene and amorphous silica. The
case of hydrogen-passivated SiO surfaces is also examined. In this
situation, the binding with graphene is practically independent of the type of
surface defects and arises, as expected, from the vdW interactions. Finally,
the interface distances obtained are shown to be in good agreement with recent
experimental studies.Comment: 10 pages, 4 figure
Graphene adhesion on mica: Role of surface morphology
We investigate theoretically the adhesion and electronic properties of
graphene on a muscovite mica surface using the density functional theory (DFT)
with van der Waals (vdW) interactions taken into account (the vdW-DF approach).
We found that irregularities in the local structure of cleaved mica surface
provide different mechanisms for the mica-graphene binding. By assuming
electroneutrality for both surfaces, the binding is mainly of vdW nature,
barely exceeding thermal energy per carbon atom at room temperature. In
contrast, if potassium atoms are non uniformly distributed on mica, the
different regions of the surface give rise to - or -type doping of
graphene. In turn, an additional interaction arises between the surfaces,
significantly increasing the adhesion. For each case the electronic states of
graphene remain unaltered by the adhesion. It is expected, however, that the
Fermi level of graphene supported on realistic mica could be shifted relative
to the Dirac point due to asymmetry in the charge doping. Obtained variations
of the distance between graphene and mica for different regions of the surface
are found to be consistent with recent atomic force microscopy experiments. A
relative flatness of mica and the absence of interlayer covalent bonding in the
mica-graphene system make this pair a promising candidate for practical use.Comment: 6 pages, 3 figure
Adsorption of diatomic halogen molecules on graphene: A van der Waals density functional study
The adsorption of fluorine, chlorine, bromine, and iodine diatomic molecules
on graphene has been investigated using density functional theory with taking
into account nonlocal correlation effects by means of vdW-DF approach. It is
shown that the van der Waals interaction plays a crucial role in the formation
of chemical bonding between graphene and halogen molecules, and is therefore
important for a proper description of adsorption in this system. In-plane
orientation of the molecules has been found to be more stable than the
orientation perpendicular to the graphene layer. In the cases of F, Br
and I we also found an ionic contribution to the binding energy, slowly
vanishing with distance. Analysis of the electronic structure shows that ionic
interaction arises due to the charge transfer from graphene to the molecules.
Furthermore, we found that the increase of impurity concentration leads to the
conduction band formation in graphene due to interaction between halogen
molecules. In addition, graphite intercalation by halogen molecules has been
investigated. In the presence of halogen molecules the binding between graphite
layers becomes significantly weaker, which is in accordance with the results of
recent experiments on sonochemical exfoliation of intercalated graphite.Comment: Submitted to PR
A nonstructural polypeptide encoded by immediate-early transcription unit 1 of murine cytomegalovirus is recognized by cytolytic T lymphocytes
We have constructed target cells by cotransfection of the MHC gene Ld and fragments of murine cytomegalovirus (MCMV) DNA coding for nonstructural immediate-early (IE) proteins. Transfectants were tested by using CTL clone IE1 with specificity for an IE epitope presented in association with Ld. Data show that clone IE1 recognizes a product of the ie1 transcription unit of MCMV, and that its specificity is shared by approximately 25% of polyclonal IE-specific CTL. The results provide the first definite evidence that expression of a herpes virus IE gene encoding a regulatory protein gives rise to antigen expression detectable by specific CT
Evolution of Proto-Neutron stars with kaon condensates
We present simulations of the evolution of a proto-neutron star in which
kaon-condensed matter might exist, including the effects of finite temperature
and trapped neutrinos. The phase transition from pure nucleonic matter to the
kaon condensate phase is described using Gibbs' rules for phase equilibrium,
which permit the existence of a mixed phase. A general property of neutron
stars containing kaon condensates, as well as other forms of strangeness, is
that the maximum mass for cold, neutrino-free matter can be less than the
maximum mass for matter containing trapped neutrinos or which has a finite
entropy. A proto-neutron star formed with a baryon mass exceeding that of the
maximum mass of cold, neutrino-free matter is therefore metastable, that is, it
will collapse to a black hole at some time during the Kelvin-Helmholtz cooling
stage.
The effects of kaon condensation on metastable stars are dramatic. In these
cases, the neutrino signal from a hypothetical galactic supernova (distance
kpc) will stop suddenly, generally at a level above the background in
the SuperK and SNO detectors, which have low energy thresholds and backgrounds.
This is in contrast to the case of a stable star, for which the signal
exponentially decays, eventually disappearing into the background. We find the
lifetimes of kaon-condensed metastable stars to be restricted to the range
40--70 s and weakly dependent on the proto-neutron star mass, in sharp contrast
to the significantly larger mass dependence and range (1--100 s) of
hyperon-rich metastable stars.Comment: 25 pages, 14 figures. Submitted to Astrophysical Journa
- …