33 research outputs found

    Pulmonary Macrophages Attenuate Hypoxic Pulmonary Vasoconstriction via beta(3)AR/iNOS Pathway in Rats Exposed to Chronic Intermittent Hypoxia

    Get PDF
    Chronic intermittent hypoxia (IH) induces activation of the sympathoadrenal system, which plays a pivotal role in attenuating hypoxic pulmonary vasoconstriction (HPV) via central beta(1)-adrenergic receptors (AR) (brain) and peripheral beta(2)AR (pulmonary arteries). Prolonged hypercatecholemia has been shown to upregulate beta(3)AR. However, the relationship between IH and beta(3)AR in the modification of HPV is unknown. It has been observed that chronic stimulation of beta(3)AR upregulates inducible nitric oxide synthase (iNOS) in cardiomyocytes and that IH exposure causes expression of iNOS in RAW264.7 macrophages. iNOS has been shown to have the ability to dilate pulmonary vessels. Hence, we hypothesized that chronic IH activates beta(3)AR/iNOS signaling in pulmonary macrophages, leading to the promotion of NO secretion and attenuated HPV. Sprague-Dawley rats were exposed to IH (3-min periods of 4-21% O-2) for 8 h/d for 6 weeks. The urinary catecholamine concentrations of IH rats were high compared with those of controls, indicating activation of the sympathoadrenal system following chronic IH. Interestingly, chronic IH induced the migration of circulating monocytes into the lungs and the predominant increase in the number of proinflammatory pulmonary macrophages. In these macrophages, both beta(3)AR and iNOS were upregulated and stimulation of the beta(3)AR/iNOS pathway in vitro caused them to promote NO secretion. Furthermore, in vivo synchrotron radiation microangiography showed that HPV was significantly attenuated in IH rats and the attenuated HPV was fully restored by blockade of beta(3)AR/iNOS pathway or depletion of pulmonary macrophages. These results suggest that circulating monocyte-derived pulmonary macrophages attenuate HPV via activation of beta(3)AR/iNOS signaling in chronic IH

    Pulmonary tumor thrombotic microangiopathy successfully treated with corticosteroids: a case report

    No full text
    Abstract Background Pulmonary tumor thrombotic microangiopathy is a special type of tumor thromboembolism. We report the case of a patient who developed pulmonary tumor thrombotic microangiopathy with alveolar hemorrhage. Almost all patients with pulmonary tumor thrombotic microangiopathy die within 1 week of the onset of dyspnea; however, the prognosis in this case was better, with 10 weeks of survival from presentation. Case presentation A 62-year-old Japanese man was referred to our hospital with a 4-week history of dyspnea on exertion and severe pulmonary hypertension. Five years previously, he had undergone distal gastrectomy for gastric cancer. He was afebrile, normotensive, and hypoxemic. A physical examination was unremarkable except for purpura on his upper extremities and trunk. Blood tests showed anemia and disseminated intravascular coagulation. Chest computed tomography revealed diffuse ground-glass opacities with emphysema in his upper lungs, moderate pleural effusions, mediastinal lymphadenopathy, and enlargement of the right ventricle and main pulmonary artery. A computed tomography pulmonary angiogram showed no evidence of pulmonary embolism. Lung perfusion scintigraphy showed multiple segmental defects. Although recurrence of gastric cancer was confirmed from the results of bone marrow biopsy, bronchoscopy was not performed due to bleeding diathesis. He was treated with corticosteroids, antibiotics, and platelet transfusion, following which resolution of the abnormal lung shadows and right ventricular pressure overload along with partial alleviation of respiratory failure was observed. Because of his poor performance status, he was eventually transited to palliative care and died 6 weeks after admission. Necropsy of the lung confirmed the diagnosis of pulmonary tumor thrombotic microangiopathy with alveolar hemorrhage. Conclusions Pulmonary tumor thrombotic microangiopathy should be considered in the differential diagnosis of patients with cancer who present with severe pulmonary hypertension. In pulmonary tumor thrombotic microangiopathy, local inflammation in pulmonary microvasculature may contribute to pulmonary hypertension, and regulation of inflammation using corticosteroids may help improve the prognosis

    beta2-adrenergic receptor-dependent attenuation of hypoxic pulmonary vasoconstriction prevents progression of pulmonary arterial hypertension in intermittent hypoxic rats

    No full text
    In sleep apnea syndrome (SAS), intermittent hypoxia (IH) induces repeated episodes of hypoxic pulmonary vasoconstriction (HPV) during sleep, which presumably contribute to pulmonary arterial hypertension (PAH). However, the prevalence of PAH was low and severity is mostly mild in SAS patients, and mild or no right ventricular hypertrophy (RVH) was reported in IH-exposed animals. The question then arises as to why PAH is not a universal finding in SAS if repeated hypoxia of sufficient duration causes cycling HPV. In the present study, rats underwent IH at a rate of 3 min cycles of 4-21% O2 for 8 h/d for 6 w. Assessment of diameter changes in small pulmonary arteries in response to acute hypoxia and drugs were performed using synchrotron radiation microangiography on anesthetized rats. In IH-rats, neither PAH nor RVH was observed and HPV was strongly reversed. Nadolol (a hydrophilic β(1, 2)-blocker) augmented the attenuated HPV to almost the same level as that in N-rats, but atenolol (a hydrophilic β1-blocker) had no effect on the HPV in IH. These β-blockers had almost no effect on the HPV in N-rats. Chronic administration of nadolol during 6 weeks of IH exposure induced PAH and RVH in IH-rats, but did not in N-rats. Meanwhile, atenolol had no effect on morphometric and hemodynamic changes in N and IH-rats. Protein expression of the β1-adrenergic receptor (AR) was down-regulated while that of β2AR was preserved in pulmonary arteries of IH-rats. Phosphorylation of p85 (chief component of phosphoinositide 3-kinase (PI3K)), protein kinase B (Akt), and endothelial nitric oxide synthase (eNOS) were abrogated by chronic administration of nadolol in the lung tissue of IH-rats. We conclude that IH-derived activation of β2AR in the pulmonary arteries attenuates the HPV, thereby preventing progression of IH-induced PAH. This protective effect may depend on the β2AR-Gi mediated PI3K/Akt/eNOS signaling pathway
    corecore