109 research outputs found

    Photon correlation in GaAs self-assembled quantum dots

    Full text link
    We report on photon coincidence measurement in a single GaAs self-assembled quantum dot (QD) using a pulsed excitation light source. At low excitation, when a neutral exciton line was present in the photoluminescence (PL) spectrum, we observed nearly perfect single photon emission from an isolated QD at 670 nm wavelength. For higher excitation, multiple PL lines appeared on the spectra, reflecting the formation of exciton complexes. Cross-correlation functions between these lines showed either bunching or antibunching behavior, depending on whether the relevant emission was from a biexciton cascade or a charged exciton recombination.Comment: 5 pages, 3 figure

    Palladium-catalyzed regioselective and stereo-invertive ring-opening borylation of 2-arylaziridines with bis(pinacolato)diboron: Experimental and computational studies

    Get PDF
    A palladium catalyzed regioselective borylative ring opening reaction of 2-arylaziridines to give β-amino-β-arylethylborates was developed. The reaction reported herein represents the first example of ring-opening borylation of non-vinylic aziridines and direct borylative C(sp3)-N bond cleavage of neutral organic substrates. NMR studies and density functional theory (DFT) calculations suggested that the active intermediate for the reaction is a PdL2 complex [L = P(t-Bu)2Me]. The multi-component artificial force-induced reaction method (MC-AFIR) located the transition states for the regioselectivity-determining aziridine ring opening that proceeds in an SN2 fashion, and explained the selectivity of the reaction. The full catalytic cycle consists of a selectivity-determining aziridine ring opening (oxidative addition), a proton transfer, phosphine ligand dissociation from the catalyst, boron-boron bond cleavage, and reductive elimination. Water is important to the drive the transmetalation step. The calculated overall mechanism and selectivity are consistent with the experimental results

    Gene expression signatures associated with chronic endometritis revealed by RNA sequencing

    Get PDF
    IntroductionChronic endometritis (CE) is a persistent inflammatory condition of the endometrium characterized by the infiltration of plasma cells in the endometrial stroma. CD138 immunohistochemistry is considered to improve the CE diagnosis rate.MethodsUsing the number of CD138-positive cells equal or greater than five as a diagnostic criterion for CE, we identified 24 CE and 33 non-CE cases among women with infertility. We conducted RNA-sequencing analysis for these 57 cases in total as an attempt to elucidate the molecular pathogenesis of CE and to search for new biomarkers for CE.Results and DiscussionBy comparing CE and non-CE groups, we identified 20 genes upregulated in the endometria of CE patients, including 12 immunoglobulin-related genes and eight non-immunoglobulin genes as differentially expressed genes. The eight genes were MUC5AC, LTF, CAPN9, MESP1, ACSM1, TVP23A, ALOX15, and MZB1. By analyzing samples in the proliferative and secretory phases of the menstrual cycle separately, we also identified four additional non-immunoglobulin genes upregulated in CE endometria: CCDC13 by comparing the samples in the proliferative phase, and OVGP1, MTUS2, and CLIC6 by comparing the samples in the secretory phase. Although the genes upregulated in CE may serve as novel diagnostic markers of CE, many of them were upregulated only in a limited number of CE cases showing an extremely high number of CD138-positive cells near or over one hundred. Exceptionally, TVP23A was upregulated in the majority of CE cases regardless of the number of CD138-positive cells. The upregulation of TVP23A in the endometria of CE cases may reflect the pathophysiology of a cell-type or cell-types intrinsic to the endometrium rather than the accumulation of plasma cells. Our data, consisting of clinical and transcriptomic information for CE and non-CE cases, helped us identify gene expression signatures associated with CE

    Visualization of Stent Lumen in MR Imaging: Relationship with Stent Design and RF Direction

    Get PDF
    Magnetic resonance imaging (MRI) visualization of metallic stent lumens is possible if the stent structure counteracts eddy currents in the lumen induced by the radio frequency magnetic field, B1. To examine the effectiveness of various stent designs in counteracting eddy currents, we anchored eight copper stent models and 2 commercially available nickel-titanium alloy (Nitinol) stents in a gel phantom, perpendicular or parallel to the direction of B1. A mesh stent lumen showed hypointensity irrespective of its alignment relative to B1. A solenoid stent lumen showed hypointensity with the stent axis parallel to B1, but it had the same signal intensity as outside the lumen when perpendicular to B1. A Moebius stent lumen showed no signal reduction, irrespective of alignment relative to B1. Lumens of the commercially available stents showed hypointensity regardless of alignment relative to B1. Computer simulation revealed that the signal intensities of the stents corresponded to magnetic flux densities of B1 in the stents, which are modified by the structure of the stent. While in vivo MRI viewing of a Moebius stent lumen is likely possible regardless of axis alignment, inherent structural weakness may be problematic. As a more practical choice, the solenoid stent is easier to manufacture and generates no hypointensive signal when the axis is parallel to B0

    A new capacitive heating applicator for the simultaneous radiohyperthermotherapy of superficial and shallow-seated tumors.

    Get PDF
    External capacitive heating is the usual method of electromagnetic wave heating, in which the tumor is caught and heated between two opposite applicators. Using a phantom, the authors developed and evaluated the performance of a new capacitive heating applicator designed for simultaneous radiohyperthermotherapy (SRH) in which the electron beam irradiation is provided from above an external capacitive heating applicator for the treatment of superficial and shallow-seated tumors. The trial applicator was constructed to fulfill the following conditions: 1. use of an electrode plate which does not affect the electron beam depth dose, 2. a uniform thickness to maintain flatness of the electron beam, and 3. a cooling function to prevent damage to normal skin tissue and enhance the therapeutic gain factor. This applicator was comprised of a 0.1-mm-thick copper electrode and a 5-mm-thick cooling chamber. The depth of the 80% dose of the new applicator was 21 mm with a 9-MeV electron beam and 36mm with a 15-MeV electron beam, which was comparable to the effect of a conventional irradiation bolus. The temperature distribution produced by the trial applicator was symmetrical on both sides from the center of the applicator. The 50% specific absorption rate region was 6.4 cm wide at a depth of 1 cm from the phantom surface and 2.8 cm wide at a depth of 3 cm. There have been no previous reports on the development of an external capacitive heating applicator designed for the SRH of superficial and shallow-seated tumors; this is the first such report.(ABSTRACT TRUNCATED AT 250 WORDS)</p

    Screening of sperm velocity by fluid mechanical characteristics of a cyclo-olefin polymer microfluidic sperm-sorting device

    Get PDF
    The microfluidic sperm-sorting (MFSS) device is a promising advancement for assisted reproductive technology. Previously, poly(dimethylsiloxiane) and quartz MFSS devices were developed and used for intracytoplasmic sperm injection. However, these disposable devices were not clinically suitable for assisted reproduction, so a cyclo-olefin polymer MFSS (COP-MFSS) device was developed. By micromachining, two microfluidic channels with different heights and widths (chip A: 0.3 x 0.5 mm; chip B: 0.1 x 0.6 mm) were prepared. Sorted sperm concentrations were similar in both microfluidic channels. Linear-velocity distribution using the microfluidic channel of chip B was higher than that of chip A. Using confocal fluorescence microscopy, it was found that the highest number of motile spermatozoa swam across the laminar flow at the bottom of the microfluidic channel. The time required to swim across the laminar flow was longer at the bottom and top of the microfluidic channels than in the middle because of the low fluid velocity. These results experimentally demonstrated that the width of microfluidic channels should be increased in the region of laminar flow from the semen inlet to the outlet for unsorted spermatozoa to selectively recover spermatozoa with high linear velocity

    Report of a study using phantom materials, and clinical experience with simultaneous radio-hyperthermotherapy.

    Get PDF
    Simultaneous radiohyperthermotherapy (SRH) is a combined hyperthermia-radiation therapy in which irradiation is given during heating. Mutual interference between the high energy radiotherapy system (Toshiba LMR-15A) and the 13.56 MHz capacitive heating system (Omron HEH-500C) was tested with phantom materials prior to a clinical trial with SRH. The energy and flatness of irradiation were not affected by the heating system within the range of clinical use. The high energy radiotherapy system did not affect the increase or distribution of temperature during simultaneous treatment. The results of this phantom study indicated that these apparatuses would not produce clinically significant mutual interference during SRH. A clinical trial was performed on a 57-year-old woman with postoperative recurrence of rectal cancer. This is the first reported clinical case treated with true SRH in which external irradiation was administered during mid capacitive heating. Twelve SRH treatments were performed on the recurrent lesion at a frequency of twice a week for six weeks using the apparatuses described above. There was a significant reduction in pain after treatment. The tumor marker carcinoembryonic antigen (CEA) level decreased after treatment. On CT images taken after treatment, the tumor site became a low density area which indicated necrosis. There were no side effects. These results suggest that further clinical study of SRH should be performed to clarify its advantages.</p

    Fabricating small-scale, curved, polymeric structures with convex and concave menisci through interfacial free energy equilibrium

    Get PDF
    Polymeric curved structures are widely used in imaging systems including optical fibers and microfluidic channels. Here, we demonstrate that small-scale, poly(dimethylsiloxane) (PDMS)-based, curved structures can be fabricated through controlling interfacial free energy equilibrium. Resultant structures have a smooth, symmetric, curved surface, and may be convex or concave in form based on surface tension balance. Their curvatures are controlled by surface characteristics (i.e., hydrophobicity and hydrophilicity) of the molds and semi-liquid PDMS. In addition, these structures are shown to be biocompatible for cell culture. Our system provides a simple, efficient and economical method for generating integrateable optical components without costly fabrication facilities

    A new experimental system for irradiating tumors in mice using a linear accelerator under specific pathogen-free conditions.

    Get PDF
    We developed a reliable system for the irradiation of xenografted tumors in mice which allows for accurate local irradiation under specific pathogen-free conditions. The system presented here consists of acrylic supports for mice and an acrylic box connected to a pump through 0.22 microns pore-sized filters. Mice with xenotransplanted tumors growing on their right hind legs were set on the supports and put into the box in a laminar flow hood. The tumors of 7 mice were irradiated simultaneously with X-rays of 6 and 10 MV generated by a linear accelerator at a dose rate of 3.1-4.7 Gy/min. The air was ventilated through filters during irradiation in the closed box. Microorganism tests confirmed that no bacteria entered or left the box. One of the significant characteristics of this setup is that it allows for irradiation under conditions of acute hypoxia, which is obtained using an integrated tourniquet. The dose variation among 7 tumors was less than 1%. The rest of the mouse's body was shielded effectively by a half-field technique and a lead block. As a result, the whole body dose for the mice was 0-4% of the total dose absorbed by the tumor. Due to the high dose rate and the ability to irradiate 7 mice simultaneously under specific pathogen-free conditions, this new system can be considered a time-saving and valuable tool for radiation oncology research.</p
    corecore