296 research outputs found

    NMR-based Structural Studies of the Glycosylated MUC1 Tandem Repeat Peptide

    Get PDF
    MUC1 is a glycoprotein that plays an important role in cancer pathogenesis. In order to study the effect of glycosylation on the conformational propensities of the tandem repeat domain of MUC1, we have determined the structure of the MUC1 tandem repeat peptide AHGVTSAPDTRPAPGSTAPP, O-glycosylated with the trisaccharide (α-Glc-1,4-β-Glc-1,4-α-GalNAc-) at Thr5. This glycopeptide was synthesized to model a heavily Oglycosylated threonine residue in the tandem repeat domain. The NMR experiments used in this study included TOCSY, NOESY, ROESY, DQF-COSY, HSQC and 1D NMR. The peak volumes determined using the program SPARKY were converted into distance constraints using the program CALIBA. The programs FiSiNOE and HABAS were used to generate angle constraints. Using conformational restraints obtained from NMR, the program DYANA was used to determine the structures of the peptide. Finally, structural refinement was performed within the SYBYL software package using GLYCAM parameters and Kollman-all atom types. The presence of strong sequential αN connectivities suggested an extended conformation of the peptide backbone. Strong sequential αδ connectivities were indicative of a trans conformation of the Ala-Pro peptide bonds. In addition, presence of sequential NN connectivities in the peptide segments Gly3-Val4-Thr5-Ser6, Asp9-Thr10-Arg11 and Gly-Ser16 were indicative of twist-like conformations of the peptide backbone in these peptide segments

    Neurologic Symptoms in Licensed Private Pesticide Applicators in the Agricultural Health Study

    Get PDF
    Exposure to high levels of many pesticides has both acute and long-term neurologic consequences, but little is known about the neurotoxicity of chronic exposure to moderate levels of pesticides. We analyzed cross-sectional data from 18,782 white male licensed private pesticide applicators enrolled in the Agricultural Health Study in 1993–1997. Applicators provided information on lifetime pesticide use and 23 neurologic symptoms typically associated with pesticide intoxication. An indicator of more symptoms (≥10 vs. < 10) during the year before enrollment was associated with cumulative lifetime days of insecticide use: odds ratios (95% confidence intervals) were 1.64 (1.36–1.97) for 1–50 days, 1.89 (1.58–2.25) for 51–500 days, and 2.50 (2.00–3.13) for > 500 days, compared with never users. A modest association for fumigants [> 50 days, 1.50 (1.24–1.81)] and weaker relationships for herbicides [> 500 days, 1.32 (0.99–1.75)] and fungicides [> 50 days, 1.23 (1.00–1.50)] were observed. Pesticide use within the year before enrollment was not associated with symptom count. Only associations with insecticides and fumigants persisted when all four pesticide groups were examined simultaneously. Among chemical classes of insecticides, associations were strongest for organophosphates and organochlorines. Associations with cumulative exposure persisted after excluding individuals who had a history of pesticide poisoning or had experienced an event involving high personal pesticide exposure. These results suggest that self-reported neurologic symptoms are associated with cumulative exposure to moderate levels of fumigants and organophosphate and organochlorine insecticides, regardless of recent exposure or history of poisoning

    Stochastic Theory of Relativistic Particles Moving in a Quantum Field: II. Scalar Abraham-Lorentz-Dirac-Langevin Equation, Radiation Reaction and Vacuum Fluctuations

    Get PDF
    We apply the open systems concept and the influence functional formalism introduced in Paper I to establish a stochastic theory of relativistic moving spinless particles in a quantum scalar field. The stochastic regime resting between the quantum and semi-classical captures the statistical mechanical attributes of the full theory. Applying the particle-centric world-line quantization formulation to the quantum field theory of scalar QED we derive a time-dependent (scalar) Abraham-Lorentz-Dirac (ALD) equation and show that it is the correct semiclassical limit for nonlinear particle-field systems without the need of making the dipole or non-relativistic approximations. Progressing to the stochastic regime, we derive multiparticle ALD-Langevin equations for nonlinearly coupled particle-field systems. With these equations we show how to address time-dependent dissipation/noise/renormalization in the semiclassical and stochastic limits of QED. We clarify the the relation of radiation reaction, quantum dissipation and vacuum fluctuations and the role that initial conditions may play in producing non-Lorentz invariant noise. We emphasize the fundamental role of decoherence in reaching the semiclassical limit, which also suggests the correct way to think about the issues of runaway solutions and preacceleration from the presence of third derivative terms in the ALD equation. We show that the semiclassical self-consistent solutions obtained in this way are ``paradox'' and pathology free both technically and conceptually. This self-consistent treatment serves as a new platform for investigations into problems related to relativistic moving charges.Comment: RevTex; 20 pages, 3 figures, Replaced version has corrected typos, slightly modified derivation, improved discussion including new section with comparisons to related work, and expanded reference

    An Updated Algorithm for Estimation of Pesticide Exposure Intensity in the Agricultural Health Study

    Get PDF
    An algorithm developed to estimate pesticide exposure intensity for use in epidemiologic analyses was revised based on data from two exposure monitoring studies. In the first study, we estimated relative exposure intensity based on the results of measurements taken during the application of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) (n = 88) and the insecticide chlorpyrifos (n = 17). Modifications to the algorithm weighting factors were based on geometric means (GM) of post-application urine concentrations for applicators grouped by application method and use of chemically-resistant (CR) gloves. Measurement data from a second study were also used to evaluate relative exposure levels associated with airblast as compared to hand spray application methods. Algorithm modifications included an increase in the exposure reduction factor for use of CR gloves from 40% to 60%, an increase in the application method weight for boom spray relative to in-furrow and for air blast relative to hand spray, and a decrease in the weight for mixing relative to the new weights assigned for application methods. The weighting factors for the revised algorithm now incorporate exposure measurements taken on Agricultural Health Study (AHS) participants for the application methods and personal protective equipment (PPE) commonly reported by study participants

    Identification of a Novel Signaling Pathway and Its Relevance for GluA1 Recycling

    Get PDF
    We previously showed that the serum- and glucocorticoid-inducible kinase 3 (SGK3) increases the AMPA-type glutamate receptor GluA1 protein in the plasma membrane. The activation of AMPA receptors by NMDA-type glutamate receptors eventually leads to postsynaptic neuronal plasticity. Here, we show that SGK3 mRNA is upregulated in the hippocampus of new-born wild type Wistar rats after NMDA receptor activation. We further demonstrate in the Xenopus oocyte expression system that delivery of GluA1 protein to the plasma membrane depends on the small GTPase RAB11. This RAB-dependent GluA1 trafficking requires phosphorylation and activation of phosphoinositol-3-phosphate-5-kinase (PIKfyve) and the generation of PI(3,5)P2. In line with this mechanism we could show PIKfyve mRNA expression in the hippocampus of wild type C57/BL6 mice and phosphorylation of PIKfyve by SGK3. Incubation of hippocampal slices with the PIKfyve inhibitor YM201636 revealed reduced CA1 basal synaptic activity. Furthermore, treatment of primary hippocampal neurons with YM201636 altered the GluA1 expression pattern towards reduced synaptic expression of GluA1. Our findings demonstrate for the first time an involvement of PIKfyve and PI(3,5)P2 in NMDA receptor-triggered synaptic GluA1 trafficking. This new regulatory pathway of GluA1 may contribute to synaptic plasticity and memory

    A Conserved Behavioral State Barrier Impedes Transitions between Anesthetic-Induced Unconsciousness and Wakefulness: Evidence for Neural Inertia

    Get PDF
    One major unanswered question in neuroscience is how the brain transitions between conscious and unconscious states. General anesthetics offer a controllable means to study these transitions. Induction of anesthesia is commonly attributed to drug-induced global modulation of neuronal function, while emergence from anesthesia has been thought to occur passively, paralleling elimination of the anesthetic from its sites in the central nervous system (CNS). If this were true, then CNS anesthetic concentrations on induction and emergence would be indistinguishable. By generating anesthetic dose-response data in both insects and mammals, we demonstrate that the forward and reverse paths through which anesthetic-induced unconsciousness arises and dissipates are not identical. Instead they exhibit hysteresis that is not fully explained by pharmacokinetics as previously thought. Single gene mutations that affect sleep-wake states are shown to collapse or widen anesthetic hysteresis without obvious confounding effects on volatile anesthetic uptake, distribution, or metabolism. We propose a fundamental and biologically conserved concept of neural inertia, a tendency of the CNS to resist behavioral state transitions between conscious and unconscious states. We demonstrate that such a barrier separates wakeful and anesthetized states for multiple anesthetics in both flies and mice, and argue that it contributes to the hysteresis observed when the brain transitions between conscious and unconscious states

    Electrophysiological Characterization of The Cerebellum in the Arterially Perfused Hindbrain and Upper Body of The Rat

    Get PDF
    In the present study, a non-pulsatile arterially perfused hindbrain and upper body rat preparation is described which is an extension of the brainstem preparation reported by Potts et al., (Brain Res Bull 53(1):59–67), 1. The modified in situ preparation allows study of cerebellar function whilst preserving the integrity of many of its interconnections with the brainstem, upper spinal cord and the peripheral nervous system of the head and forelimbs. Evoked mossy fibre, climbing fibre and parallel fibre field potentials and EMG activity elicited in forelimb biceps muscle by interpositus stimulation provided evidence that both cerebellar inputs and outputs remain operational in this preparation. Similarly, the spontaneous and evoked single unit activity of Purkinje cells, putative Golgi cells, molecular interneurones and cerebellar nuclear neurones was similar to activity patterns reported in vivo. The advantages of the preparation include the ability to record, without the complications of anaesthesia, stabile single unit activity for extended periods (3 h or more), from regions of the rat cerebellum that are difficult to access in vivo. The preparation should therefore be a useful adjunct to in vitro and in vivo studies of neural circuits underlying cerebellar contributions to movement control and motor learning
    corecore