33 research outputs found

    DNA-Binding Interaction Studies of Microwave Assisted Synthesized Sulfonamide Substituted 8-Hydroxyquinoline Derivatives

    Get PDF
    Sulfonamide substituted 8-hydroxyquinoline derivatives were prepared using a microwave synthesizer. The interaction of sulfonamide substituted 8-hydroxyquinoline derivatives and their transition metal complexes with Plasmid (pUC 19) DNA and Calf Thymus DNA were investigated by UV spectroscopic studies and gel electrophoresis measurements. The interaction between ligand/metal complexes and DNA was carried out by increasing the concentration of DNA from 0 to 12 μl in UV spectroscopic study, while the concentration of DNA in gel electrophoresis remained constant at 10 μl. These studies supported the fact that, the complex binds to DNA by intercalation via ligand into the base pairs of DNA. The relative binding efficacy of the complexes to DNA was much higher than the binding efficacy of ligands, especially the complex of Cu-AHQMBSH had the highest binding ability to DNA. The mobility of the bands decreased as the concentration of the complex was increased, indicating that there was increase in the interaction between the metal ion and DNA. Complexes of AHQMBSH were excellent for DNA binding as compared to HQMABS

    Biosorption Potential of Trichoderma gamsii Biomass for Removal of Cr(VI) from Electroplating Industrial Effluent

    Get PDF
    The potential use of acid-treated biomass of Trichoderma gamsii to remove hexavalent chromium ions from electroplating industrial effluent was evaluated. Electroplating industrial effluent contaminated with 5000 mg/L of Cr(VI) ions, collected from industrial estate of Gujarat, India, was mixed with acid-treated biomass of T. gamsii at biomass dose of 10 mg/mL. Effect of contact time and initial Cr(VI) ions was studied. The biosorption of Cr(VI) ions attained equilibrium at time interval of 240 minutes with maximum removal of 87% at preadjusted initial Cr(VI) concentration of 100 mg/L. The biosorption of Cr(VI) ions by biomass of T. gamsii increased as the initial Cr(VI) ion concentration of the effluent was adjusted in increasing range of 100–500 mg/L. At 500 mg/L, initial Cr(VI) concentration, acid-treated biomass of T. gamsii showed maximum biosorption capacity of 44.8 mg/g biomass from electroplating effluent. The Cr(VI) biosorption data were analysed using adsorption isotherms, that is, Freundlich and Langmuir isotherm. The correlation regression coefficients (R2) and isotherm constant values show that the biosorption process follows Freundlich isotherm (R2>0.9, n>1, and Kf=8.3). The kinetic study shows that biosorption of Cr(VI) ions by acid-treated biomass of T. gamsii follows pseudo-second-order rate of reaction at increasing concentration of Cr(VI). In conclusion, acid-treated biomass of T. gamsii can be used as biosorbent for Cr(VI) ions removal from Cr(VI)-contaminated wastewater generated by industries

    Bioremediation concepts for treatment of dye containing wastewater: A review

    No full text
    1068-1075<span style="font-size:14.0pt;line-height: 115%;font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" color:black;mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:="" hi"="" lang="EN-IN">Synthetic dyes are extensively used in wide range of industries amongst which textile processing industries are the major consumers. Large amounts of dyes are lost in wastewaters of these industries during dyeing and subsequent washing steps of textiles. These dyes are resistant to degradation by conventional wastewater treatment plants and are released into environment untreated thus causing pollution of surface and ground waters in the areas of the world harboring such industries. Presence of color in wastewaters has become major environmental concern and stringent discharge standards are being enforced on release of colored wastewater in environment. The seriousness of the problem is apparent from the magnitude of the research done in this field in last decade. Increasing number of microorganisms are being described for their ability to decolorize and degrade artificial dyes and novel bioremediation approaches for treatment dye bearing wastewaters are being worked out. In this review we have investigated potential microbial processes for developing feasible remediation technology to combat environmental pollution due to dye bearing wastewaters.</span

    Biosorption Potential of Trichoderma gamsii Biomass for Removal of Cr(VI) from Electroplating Industrial Effluent

    No full text
    The potential use of acid-treated biomass of Trichoderma gamsii to remove hexavalent chromium ions from electroplating industrial effluent was evaluated. Electroplating industrial effluent contaminated with 5000 mg/L of Cr(VI) ions, collected from industrial estate of Gujarat, India, was mixed with acid-treated biomass of T. gamsii at biomass dose of 10 mg/mL. Effect of contact time and initial Cr(VI) ions was studied. The biosorption of Cr(VI) ions attained equilibrium at time interval of 240 minutes with maximum removal of 87% at preadjusted initial Cr(VI) concentration of 100 mg/L. The biosorption of Cr(VI) ions by biomass of T. gamsii increased as the initial Cr(VI) ion concentration of the effluent was adjusted in increasing range of 100-500 mg/L. At 500 mg/L, initial Cr(VI) concentration, acid-treated biomass of T. gamsii showed maximum biosorption capacity of 44.8 mg/g biomass from electroplating effluent. The Cr(VI) biosorption data were analysed using adsorption isotherms, that is, Freundlich and Langmuir isotherm. The correlation regression coefficients (R 2 ) and isotherm constant values show that the biosorption process follows Freundlich isotherm (R 2 &gt; 0.9, n &gt; 1, and K f = 8.3). The kinetic study shows that biosorption of Cr(VI) ions by acid-treated biomass of T. gamsii follows pseudo-second-order rate of reaction at increasing concentration of Cr(VI). In conclusion, acid-treated biomass of T. gamsii can be used as biosorbent for Cr(VI) ions removal from Cr(VI)-contaminated wastewater generated by industries

    Lipopeptides from the Banyan Endophyte, Bacillus subtilis K1: Mass Spectrometric Characterization of a Library of Fengycins

    No full text
    Mass spectrometric analysis of a banyan endophyte, Bacillus subtilis K1, extract showing broad spectrum antifungal activity revealed a complex mixture of lipopeptides, iturins, surfactins, and fengycins. Fractionation by reversed-phase high performance liquid chromatography (HPLC) facilitated a detailed analysis of fengycin microheterogeneity. Matrix assisted laser desorption ionization (MALDI) and electrospray ionization (ESI) mass spectrometric studies permitted the identification of several new fengycin variants. Four major sites of heterogeneity are identified: (1) N-terminus beta-hydroxy fatty acid moiety, where chain length variation and the presence of unsaturation occur, (2) position 6 (Ala/Val/Ile/Leu), (3) position 10 (Val/Ile) within the macrocyclic ring, and (4) Gln to Glu replacement at position 8, resulting in fengycin variants that differ in mass by 1 Da. Diagnostic fragment ions provide a quick method for localizing the sites of variation in the macrocycle or the linear segment. Subsequent establishment of the sequences is achieved by MS/MS analysis of linear fengycin species produced by hydrolysis of the macrocyclic lactone. Unsaturation in the fatty acid chain and the presence of linear precursors in the B. subtilis K1 extract are also established by mass spectrometry. The anomalous distribution of intensities within isotopic multiplets is a diagnostic for Gln/Glu replacements. High resolution mass spectrometry facilitates the identification of fengycin species differing by 1 Da by localizing the variable position (Gln(8)/Glu(8)) in the fengycin variants

    Genome assisted probiotic characterization and application of Bacillus velezensis ZBG17 as an alternative to antibiotic growth promoters in broiler chickens

    No full text
    Not AvailableThe present study describes genome annotation and phenotypic characterization of Bacillus velezensis ZBG17 and evaluation of its performance as antibiotic growth promoter substitute in broiler chickens. ZBG17 comprises 3.89 Mbp genome with GC content of 46.5%. ZBG17 could tolerate simulated gastrointestinal juices prevalent in the animal gut. Some adhesion-associated genomic features of ZBG17 supported the experimentally determined cell surface hydrophobicity and cell aggregation results. ZBG17 encoded multiple secondary metabolite gene clusters correlating with its broad-spectrum antibacterial activity. Interestingly, ZBG17 completely inhibited Salmonella enterica and Escherichia coli within 6 h and 8 h in liquid co-culture assay, respectively. ZBG17 genome analysis did not reveal any genetic determinant associated with reported safety hazards for use as a poultry direct-fed microbial. Dietary supplementation of ZBG17 significantly improved feed utilization efficiency and humoral immune response in broiler chickens, suggesting its prospective application as a direct-fed microbial in broiler chickens.Not AvailablePathogen exclusionantimicrobialsDirect fed microbial

    Characterization of carbamoyl phosphate synthetase of <i>Streptomyces </i>spp.

    No full text
    931-935Carbamoyl phosphate synthetase (CPS) activity in Streptomyces lividans was repressed (70%) by addition of arginine and uracil in the growth medium. Enzyme activity was also inhibited by UMP and activated by ornithine and IMP. Pattern of inhibition and activation was similar irrespective of whether the cells were grown in medium supplemented with arginine or with uracil. A mutant of S. coelicolor with dual auxotrophy for arginine and uracil possessed only about 20% of CPS activity compared to the wild-type strain. An activity staining protocol has been developed for CPS enzyme. Using this method a single CPS band has been observed in the crude extracts of Escherichia coli as well as in S. lividans. Taken together, our results supported the conclusion that Streptomyces species might possess a single CPS enzyme unlike other gram-positive bacteria, which show the presence of two pathway-specific isozymes (Bacillus) or none (Lactobacillus and Leuconostoc).</i
    corecore