514 research outputs found

    Vanishing Cosmological Constant by Gravitino-Dressed Compactification of 11D Supergravity

    Full text link
    We consider compactifications induced by the gravitino field of eleven dimensional supergravity. Such compactifications are not trivial in the sense that the gravitino profiles are not related to pure bosonic ones by means of a supersymmetry transformation. The basic property of such backgrounds is that they admit ψ\psi-torsion although they have vanishing Riemann tensor. Thus, these backgrounds may be considered also as solutions of the teleparallel formulation of supergravity. We construct two classes of solutions, one with both antisymmetric three-form field, gravity and gravitino and one with only gravity and gravitino. In these classes of solutions, the internal space is a parallelized compact manifold, so that it does not inherit any cosmological constant to the external spacetime. The latter turns out to be flat Minkowski in the maximally symmetric case. The elimination of the cosmological constant in the spontaneously compactified supergravity seems to be a generic property based on the trading of the cosmological constant for parallelizing torsion.Comment: 17 pages, no figure

    Corrections to Gravity due to a Sol Manifold Extra Dimensional Space

    Full text link
    The corrections to the gravitational potential due to a Sol extra dimensional compact manifold, denoted as MA3M_A^3, are studied. The total spacetime is of the form M4×MA3M^4\times M_A^3. The range of the Sol corrections is investigated and compared to the range of the T3T^3 corrections.Comment: 13 pages, 10 figures, published versio

    Scalar potential from de Sitter brane in 5D and effective cosmological constant

    Full text link
    We derive the scalar potential in zero mode effective action arising from a de Sitter brane embedded in five dimensions with bulk cosmological constant Λ\Lambda. The scalar potential for a scalar field canonically normalized is given by the sum of exponential potentials. In the case of Λ=0\Lambda=0 and Λ>0\Lambda>0, we point out that the scalar potential has an unstable local maximum at the origin and exponentially vanishes for large positive scalar field. In the case of Λ<0\Lambda<0, the scalar potential has an unstable local maximum at the origin and a stable local minimum, it is shown that the positive cosmological constant in brane is reduced by negative potential energy of scalar at minimum.Comment: 14 pages, 5 figures, add the section of cosmological implication

    Penrose Limits of Orbifolds and Orientifolds

    Get PDF
    We study the Penrose limit of various AdS_p X S^q orbifolds. The limiting spaces are waves with parallel rays and singular wave fronts. In particular, we consider the orbifolds AdS_3 X S^3/\Gamma, AdS_5 X S^5/\Gamma and AdS_{4,7} X S^{7,4}/\Gamma where \Gamma acts on the sphere and/or the AdS factor. In the pp-wave limit, the wave fronts are the orbifolds C^2/\Gamma, C^4/\Gamma and R XC^4/\Gamma, respectively. When desingularization is possible, we get asymptotically locally pp-wave backgrounds (ALpp). The Penrose limit of orientifolds are also discussed. In the AdS_5 X RP^5 case, the limiting singularity can be resolved by an Eguchi-Hanson gravitational instanton. The pp-wave limit of D3-branes near singularities in F-theory is also presented. Finally, we give the embedding of D-dimensional pp-waves in flat M^{2,D} space.Comment: 20 pages, references adde

    Comment on superluminality in general relativity

    Full text link
    General relativity provides an appropriate framework for addressing the issue of sub- or superluminality as an apparent effect. Even though a massless particle travels on the light cone, its average velocity over a finite path measured by different observers is not necessarily equal to the velocity of light, as a consequence of the time dilation or contraction in gravitational fields. This phenomenon occurs in either direction (increase or depletion) irrespectively of the details and strength of the gravitational interaction. Hence, it does not intrinsically guarantee superluminality, even when the gravitational field is reinforced.Comment: 6 page

    Classical and Quantum Bianchi Type III vacuum Horava - Lifshitz Cosmology

    Full text link
    A diagonal Bianchi Type III space-time is treated, both at the classical and quantum level, in the context of Horava - Lifshitz gravity. The system of the classical equations of motion is reduced to one independent Abel's equation of the first kind. Closed form solution are presented for various values of the coupling constants appearing in the action. Due to the method used, solutions of Euclidean, Lorentzian and neutral signature are attained. The solutions corresponding to \lamda 1 are seen to develop curvature singularities as the other constants approach their Einsteinian values, in contrast to those with \lamda = 1 which tend to the known Einstein gravity solutions. At the quantum level, the resulting Wheeler-DeWitt equation is explicitly solved for \lamda = 1, \sigma = 0 and \lamda = 1/3 . The ensuing wave-functions diverge in the Einsteinian limit.Comment: LaTeX 2e source file, 17 pages, no figure

    Dilaton-driven brane inflation in type IIB string theory

    Get PDF
    We consider the cosmological evolution of the three-brane in the background of type IIB string theory. For two different backgrounds which give nontrivial dilaton profile we have derived the Friedman-like equations. These give the cosmological evolution which is similar to the one by matter density on the universe brane. The effective density blows up as we move towards the singularity showing the initial singularity problem. The analysis shows that when there is axion field in the ambient space the recollapsing of the universe occurs faster compared with the case without axion field.Comment: typos corrected, reference added, version to appear in Physical Review

    Braneworld inflation

    Full text link
    We discuss various realizations of the four dimensional braneworld inflation in warped geometries of string theory. In all models the inflaton field is represented by a Dp probe brane scalar specifying its position in the warped throat of the compactification manifold. We study existing inflationary throat local geometries, and construct a new example. The inflationary brane is either a D3- or a D5-brane of type IIB string theory. In the latter case the inflationary brane is wrapping a two-cycle of the compactification manifold. We discuss some phenomenological aspects of the model where slow-roll conditions are under computational control.Comment: 31 pages + 6 figures, v2: published PRD versio
    • …
    corecore