2 research outputs found

    Supersymmetry breaking and inflation from higher curvature supergravity

    Get PDF
    The generic embedding of the R + R 2 higher curvature theory into old-minimal supergravity leads to models with rich vacuum structure in addition to its well-known inflationary properties. When the model enjoys an exact R-symmetry, there is an inflationary phase with a single supersymmetric Minkowski vacuum. This appears to be a special case of a more generic set-up, which in principle may include R-symmetry violating terms which are still of pure supergravity origin. By including the latter terms, we find new supersymmetry breaking vacua compatible with single-field inflationary trajectories. We discuss explicitly two such models and we illustrate how the inflaton is driven towards the supersymmetry breaking vacuum after the inflationary phase. In these models the gravitino mass is of the same order as the inflaton mass. Therefore, pure higher curvature supergravity may not only accommodate the proper inflaton field, but it may also provide the appropriate hidden sector for supersymmetry breaking after inflation has ended

    Consequences of symmetries and consistency relations in the large-scale structure of the universe for non-local bias and modified gravity

    Get PDF
    Consistency relations involving the soft limit of the <math altimg="si1.gif" xmlns="http://www.w3.org/1998/Math/MathML"><mo stretchy="false">(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo stretchy="false">)</mo></math> -correlation functions of dark matter and galaxy overdensities can be obtained, both in real and redshift space, thanks to the symmetries enjoyed by the Newtonian equations of motion describing the dark matter and galaxy fluids coupled through gravity. We study the implications of such symmetries for the theory of galaxy bias and for the theories of modified gravity. We find that the invariance of the fluid equations under a coordinate transformation that induces a long-wavelength velocity constrains the bias to depend only on a set of invariants, while the symmetry of such equations under Lifshitz scalings in the case of matter domination allows one to compute the time-dependence of the coefficients in the bias expansion. We also find that theories of modified gravity which violate the equivalence principle induce a violation of the consistency relation which may be a signature for their observation. Thus, given adiabatic Gaussian initial conditions, the observation of a deviation from the consistency relation for galaxies would signal a breakdown of the so-called non-local Eulerian bias model or the violation of the equivalence principle in the underlying theory of gravity
    corecore