644 research outputs found

    Pre-Existing Superbubbles as the Sites of Gamma-Ray Bursts

    Get PDF
    According to recent models, gamma-ray bursts apparently explode in a wide variety of ambient densities ranging from ~ 10^{-3} to 30 cm^{-3}. The lowest density environments seem, at first sight, to be incompatible with bursts in or near molecular clouds or with dense stellar winds and hence with the association of gamma-ray bursts with massive stars. We argue that low ambient density regions naturally exist in areas of active star formation as the interiors of superbubbles. The evolution of the interior bubble density as a function of time for different assumptions about the evaporative or hydrodynamical mass loading of the bubble interior is discussed. We present a number of reasons why there should exist a large range of inferred afterglow ambient densities whether gamma-ray bursts arise in massive stars or some version of compact star coalescence. We predict that many gamma-ray bursts will be identified with X-ray bright regions of galaxies, corresponding to superbubbles, rather than with blue localized regions of star formation. Massive star progenitors are expected to have their own circumstellar winds. The lack of evidence for individual stellar winds associated with the progenitor stars for the cases with afterglows in especially low density environments may imply low wind densities and hence low mass loss rates combined with high velocities. If gamma-ray bursts are associated with massive stars, this combination might be expected for compact progenitors with atmospheres dominated by carbon, oxygen or heavier elements, that is, progenitors resembling Type Ic supernovae.Comment: 14 pages, no figures, submitted to The Astrophysical Journa

    Sources of UHECRs in view of the TUS and JEM-EUSO experiments

    Full text link
    The origin of ultra-high-energy cosmic rays (UHECRs) is one of the most intriguing problems of modern cosmic ray physics. We briefly review the main astrophysical models of their origin and the forthcoming orbital experiments TUS and JEM-EUSO, and discuss how the new data can help one solve the long-standing puzzle.Comment: 4 pages; prepared for ECRS-2012 (http://ecrs2012.sinp.msu.ru/); v2: a reference adde

    Motivations and barriers to prosthesis users participation in physical activity, exercise and sport : a review of the literature

    Get PDF
    The UK will host the Paralympics in 2012 and the Commonwealth Games in 2014 showcasing the talents of elite athletes and aiming to inspire the population to become involved. However, low levels of physical activity (PA) are prevalent: only 40% of men and 28% of women meet the minimum UK recommendations. The limb absent population is no exception. To determine if people with limb amputations are participating in physical activity and sport; whether post-amputation activity levels match pre-amputation levels; and if there are motivations and barriers to participation. Study design: Literature review Five reviewers systematically search of peer reviewed and gray literature in seven bibliographic databases and the Cochrane Library. Results: Following rigorous elimination, 12 articles were finally included in the review and critically appraised. Four themes were identified: components, rehabilitation outcomes, body image and motivations and barriers to participation. People with limb absence are not participating in PA conducive to health benefits, and only a minority participate in exercise and sports. Participation following amputation does not mirror that of pre-amputation levels, and more barriers than motivations exist to adopting and maintaining a physically active lifestyle. This literature review aims to inform those involved in rehabilitation and ongoing care of those with limb absence about what motivates or precludes their participation in physical activity, exercise and sport. Such knowledge could be applied to improving health and well being in this population

    Absence of correlation between built-in electric dipole moment and quantum Stark effect in InAs/GaAs self-assembled quantum dots

    Full text link
    We report significant deviations from the usual quadratic dependence of the ground state interband transition energy on applied electric fields in InAs/GaAs self-assembled quantum dots. In particular, we show that conventional second-order perturbation theory fails to correctly describe the Stark shift for electric field below F=10F = 10 kV/cm in high dots. Eight-band k⋅p{\bf k}\cdot{\bf p} calculations demonstrate this effect is predominantly due to the three-dimensional strain field distribution which for various dot shapes and stoichiometric compositions drastically affects the hole ground state. Our conclusions are supported by two independent experiments.Comment: 4 pages, 4 figure

    Nonlinear Radiation Pressure and Stochasticity in Ultraintense Laser Fields

    Get PDF
    The radiation force on a single electron in an ultraintense plane wave (a=eE/mcω∌1a = eE/mc\omega \sim 1) is calculated and shown to be proportional to a4a^4 in the high-aa limit for arbitrary waveform and polarization. The cyclotron motion of an electron in a constant magnetic field and an ultraintense plane wave is numerically found to be quasiperiodic even in the high-aa limit if the magnetic field is not too strong, as suggested by previous analytical work. A strong magnetic field causes highly chaotic electron motion and the boundary of the highly chaotic region of parameter space is determined numerically. Applications to experiments and astrophysics are briefly discussed.Comment: 5 pages, 4 figures; uses RevTex, epsf macros. Corrected, expanded versio

    Freezing by Monte Carlo Phase-Switch

    Full text link
    We describe a Monte Carlo procedure which allows sampling of the disjoint configuration spaces associated with crystalline and fluid phases, within a single simulation. The method utilises biased sampling techniques to enhance the probabilities of gateway states (in each phase) which are such that a global switch (to the other phase) can be implemented. Equilibrium freezing-point parameters can be determined directly; statistical uncertainties prescribed transparently; and finite-size effects quantified systematically. The method is potentially quite general; we apply it to the freezing of hard spheres.Comment: 5 pages, 2 figure

    Predator-Prey Interactions between Droplets Driven by Nonreciprocal Oil Exchange

    Get PDF
    Chemotactic interactions are ubiquitous in nature and can lead to nonreciprocal and complex emergent behavior in multibody systems. Here we show how chemotactic signaling between microscale oil droplets of different chemistries in micellar surfactant solutions can result in predator-prey-like chasing interactions. The interactions and dynamic self-organization result from the net directional, micelle-mediated transport of oil between emulsion droplets of differing composition and are powered by the free energy of mixing. The nonreciprocal behavior occurs in a wide variety of oil and surfactant conditions, and we systematically elucidate chemical design rules for tuning the interactions between droplets by varying oil and surfactant chemical structure and concentration. Through integration of experiment and simulation, we also investigate the active behavior and dynamic reorganization of multi-droplet clusters. Our findings demonstrate how chemically-minimal systems can be designed with controllable, non-reciprocal chemotactic interactions to generate emergent self-organization and collective behaviors reminiscent of biological systems

    Does Turbulent Pressure Behave as a Logatrope?

    Full text link
    We present numerical simulations of an isothermal turbulent gas undergoing gravitational collapse, aimed at testing for ``logatropic'' behavior of the form Pt∌logâĄÏP_t \sim \log \rho, where PtP_t is the ``turbulent pressure'' and ρ\rho is the density. To this end, we monitor the evolution of the turbulent velocity dispersion σ\sigma as the density increases during the collapse. A logatropic behavior would require that σ∝ρ−1/2\sigma \propto \rho^{-1/2}, a result which, however, is not verified in the simulations. Instead, the velocity dispersion increases with density, implying a polytropic behavior of PtP_t. This behavior is found both in purely hydrodynamic as well as hydromagnetic runs. For purely hydrodynamic and rapidly-collapsing magnetic cases, the velocity dispersion increases roughly as σ∝ρ1/2\sigma \propto \rho^{1/2}, implying Pt∌ρ2P_t\sim \rho^2, where PtP_t is the turbulent pressure. For slowly-collapsing magnetic cases the behavior is close to σ∝ρ1/4\sigma \propto \rho^{1/4}, which implies Pt∌ρ3/2P_t \sim \rho^{3/2}. We thus suggest that the logatropic ``equation of state'' may represent only the statistically most probable state of an ensemble of clouds in equilibrium between self-gravity and kinetic support, but does not adequately represent the behavior of the ``turbulent pressure'' within a cloud undergoing a dynamic compression due to gravitational collapse. Finally, we discuss the importance of the underlying physical model for the clouds (in equilibrium vs. dynamic) on the results obtained.Comment: Accepted in ApJ. 10 pages, 3 postscript figure

    Prediction of falling among stroke patients in rehabilitation

    Full text link
    • 

    corecore