32 research outputs found

    Detailed molecular and clinical investigation of a child with a partial deletion of chromosome 11 (Jacobsen syndrome)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Jacobsen syndrome (JBS) is a rare chromosomal disorder leading to multiple physical and mental impairment. This syndrome is caused by a partial deletion of chromosome 11, especially subband 11q24.1 has been proven to be involved. Clinical cases may easily escape diagnosis, however pancytopenia or thrombocytopenia may be indicative for JBS.</p> <p>Results</p> <p>We report a 7.5 years old boy presenting with speech development delay, hearing impairment and abnormal platelet function. High resolution SNP oligonucleotide microarray analysis revealed a terminal deletion of 11.4 Mb in size, in the area 11q24.1-11qter. This specific deletion encompasses around 170 genes. Other molecular techniques such as fluorescence in situ hybridization and multiplex ligation-dependent probe amplification were used to confirm the array-result.</p> <p>Discussion</p> <p>Our results suggest that the identification and detailed analysis of similar patients with abnormal platelet function and otherwise mild clinical features will contribute to identification of more patients with 11q deletion and JBS.</p

    Combined 22q11.1-q11.21 deletion with 15q11.2-q13.3 duplication identified by array-CGH in a 6 years old boy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Deletions of chromosome 22q11 are present in over 90% of cases of DiGeorge or Velo-Cardio-Facial syndrome (DGS/VCFS). 15q11-q13 duplication is another recognized syndrome due to rearrangements of several genes, belonging to the category of imprinted genes. The phenotype of this syndrome varies but has been clearly associated with developmental delay and autistic spectrum disorders. Co-existence of the two syndromes has not been reported so far.</p> <p>Results</p> <p>Here we report a 6-year-old boy presenting growth retardation, dysmorphic features and who exhibited learning difficulties. Fluorescence in situ hybridization (FISH) analysis of the proband revealed a deletion of DiGeorge Syndrome critical region (TUPLE). Array-CGH analysis revealed an interstitial duplication of 12 Mb in size in the area 15q11.2-q13.3, combined with a 3.2 Mb deletion at region 22q11.1-q11.21. FISH analysis in the mother showed a cryptic balanced translocation between chromosome 15 and chromosome 22 (not evident by classic karyotyping).</p> <p>Discusion</p> <p>The clinical manifestations could be related to both syndromes and the importance of array-CGH analysis in cases of unexplained developmental delay is emphasized. The present case further demonstrates how molecular cytogenetic techniques applied in the parents were necessary for the genetic counseling of the family.</p

    The use of array-CGH in a cohort of Greek children with developmental delay

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The genetic diagnosis of mental retardation (MR) is difficult to establish and at present many cases remain undiagnosed and unexplained. Standard karyotyping has been used as one of the routine techniques for the last decades. The implementation of Array Comparative Genomic Hybridization (array-CGH) has enabled the analysis of copy number variants (CNVs) with high resolution. Major cohort studies attribute 11% of patients with unexplained mental retardation to clinically significant CNVs. Here we report the use of array-CGH for the first time in a Greek cohort. A total of 82 children of Greek origin with mean age 4.9 years were analysed in the present study. Patients with visible cytogenetic abnormalities ascertained by standard karyotyping as well as those with subtelomeric abnormalities determined by Multiplex Ligation-dependent Probe Amplification (MLPA) or subtelomeric FISH had been excluded.</p> <p>Results</p> <p>Fourteen CNVs were detected in the studied patients. In nine patients (11%) the chromosomal aberrations were inherited from one of the parents. One patients showed two duplications, a 550 kb duplication in 3p14.1 inherited from the father and a ~1.1 Mb duplication in (22)(q13.1q13.2) inherited from the mother. Although both parents were phenotypically normal, it cannot be excluded that the dual duplication is causative for the patient's clinical profile including dysmorphic features and severe developmental delay. Furthermore, three <it>de novo </it>clinically significant CNVs were detected (3.7%). There was a ~6 Mb triplication of 18q21.1 in a girl 5 years of age with moderate MR and mild dysmorphic features and a ~4.8 Mb duplication at (10)(q11.1q11.21) in a 2 years old boy with severe MR, multiple congenital anomalies, severe central hypotonia, and ataxia. Finally, in a 3 year-old girl with microcephaly and severe hypotonia a deletion in (2)(q31.2q31.3) of about ~3.9 Mb was discovered. All CNVs were confirmed by Fluorescence <it>in situ </it>hybridization (FISH). For the remaining 9 patients the detected CNVs (inherited duplications or deletions of 80 kb to 800 kb in size) were probably not associated with the clinical findings.</p> <p>Conclusions</p> <p>Genomic microarrays have within the recent years proven to be a highly useful tool in the investigation of unexplained MR. The cohorts reported so far agree on an around 11% diagnostic yield of clinically significant CNVs in patients with unexplained MR. Various publicly available databases have been created for the interpretation of identified CNVs and parents are analyzed in case a rare CNV is identified in the child. We have conducted a study of Greek patients with unexplained MR and confirmed the high diagnostic value of the previous studies. It is important that the technique becomes available also in less developed countries when the cost of consumables will be reduced.</p

    Mapping and Understanding the Dynamics of Landscape Changes on Heterogeneous Mediterranean Islands with the Use of OBIA: The Case of Ionian Region, Greece

    No full text
    Mediterranean islands contain heterogeneous landscapes, resulting from the complex interactions between natural and anthropogenic processes, and have significant ecological and conservation importance. They are vulnerable systems to global change and the monitoring of changes, induced by the interacting environmental drivers, is of particular importance for applying a sustainable management regime. The aim of this study was to detect and analyze the landscape dynamics and changes in landscape composition over a 30-year period on the Ionian Islands of Western Greece. State-of-the-art object-oriented image analysis on freely available remote sensing data such as Landsat images was employed achieving final mapping products with high spatial and thematic accuracy (over than 85%), and a transferable classification scheme. The main drivers of environmental change are tourism and associated activities, wildfires and livestock breeding which act in different ways and intensities within and between the islands. The repopulation of those islands, after a period of significant depopulation from the 1940s to the 1980s, and the boom of tourism since the mid-1970s prevented further land abandonment and the recultivation of abandoned land which indicates that tourism and agriculture can be complementary rather than competing economic sectors. Despite the significant increase of tourism, a general trend was observed towards increasing cover of high-density vegetation formations, such as shrublands and forests. At the same time, wildfires, which are in some cases associated with livestock breeding, continue to be an important vegetation degradation factor preventing further ecosystem recovery on the study islands

    Computer Vision in Self-Steering Tractors

    No full text
    Automatic navigation of agricultural machinery is an important aspect of Smart Farming. Intelligent agricultural machinery applications increasingly rely on machine vision algorithms to guarantee enhanced in-field navigation accuracy by precisely locating the crop lines and mapping the navigation routes of vehicles in real-time. This work presents an overview of vision-based tractor systems. More specifically, this work deals with (1) the system architecture, (2) the safety of usage, (3) the most commonly faced navigation errors, (4) the navigation control system of tractors and presents (5) state-of-the-art image processing algorithms for in-field navigation route mapping. In recent research, stereovision systems emerge as superior to monocular systems for real-time in-field navigation, demonstrating higher stability and control accuracy, especially in extensive crops such as cotton, sunflower, maize, etc. A detailed overview is provided for each topic with illustrative examples that focus on specific agricultural applications. Several computer vision algorithms based on different optical sensors have been developed for autonomous navigation in structured or semi-structured environments, such as orchards, yet are affected by illumination variations. The usage of multispectral imaging can overcome the encountered limitations of noise in images and successfully extract navigation paths in orchards by using a combination of the trees&rsquo; foliage with the background of the sky. Concisely, this work reviews the current status of self-steering agricultural vehicles and presents all basic guidelines for adapting computer vision in autonomous in-field navigation
    corecore