45 research outputs found
Enhanced NFκB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer
BACKGROUND: Signaling pathways that converge on two different transcription factor complexes, NFκB and AP-1, have been identified in estrogen receptor (ER)-positive breast cancers resistant to the antiestrogen, tamoxifen. METHODS: Two cell line models of tamoxifen-resistant ER-positive breast cancer, MCF7/HER2 and BT474, showing increased AP-1 and NFκB DNA-binding and transcriptional activities, were studied to compare tamoxifen effects on NFκB and AP-1 regulated reporter genes relative to tamoxifen-sensitive MCF7 cells. The model cell lines were treated with the IKK inhibitor parthenolide (PA) or the proteasome inhibitor bortezomib (PS341), alone and in combination with tamoxifen. Expression microarray data available from 54 UCSF node-negative ER-positive breast cancer cases with known clinical outcome were used to search for potential genes signifying upregulated NFκB and AP-1 transcriptional activity in association with tamoxifen resistance. The association of these genes with patient outcome was further evaluated using node-negative ER-positive breast cancer cases identified from three other published data sets (Rotterdam, n = 209; Amsterdam, n = 68; Basel, n = 108), each having different patient age and adjuvant tamoxifen treatment characteristics. RESULTS: Doses of parthenolide and bortezomib capable of sensitizing the two endocrine resistant breast cancer models to tamoxifen were capable of suppressing NFκB and AP-1 regulated gene expression in combination with tamoxifen and also increased ER recruitment of the transcriptional co-repressor, NCoR. Transcript profiles from the UCSF breast cancer cases revealed three NFκB and AP-1 upregulated genes – cyclin D1, uPA and VEGF – capable of dichotomizing node-negative ER-positive cases into early and late relapsing subsets despite adjuvant tamoxfien therapy and most prognostic for younger age cases. Across the four independent sets of node-negative ER-positive breast cancer cases (UCSF, Rotterdam, Amsterdam, Basel), high expression of all three NFκB and AP-1 upregulated genes was associated with earliest metastatic relapse. CONCLUSION: Altogether, these findings implicate increased NFκB and AP-1 transcriptional responses with tamoxifen resistant breast cancer and early metastatic relapse, especially in younger patients. These findings also suggest that agents capable of preventing NFκB and AP-1 gene activation may prove useful in restoring the endocrine responsiveness of such high-risk ER-positive breast cancers
Phase I studies of AZD1208, a proviral integration Moloney virus kinase inhibitor in solid and haematological cancers.
BACKGROUND:Proviral integration Moloney virus (PIM) kinases (PIM1, 2 and 3) are overexpressed in several tumour types and contribute to oncogenesis. AZD1208 is a potent ATP-competitive PIM kinase inhibitor investigated in patients with recurrent or refractory acute myeloid leukaemia (AML) or advanced solid tumours. METHODS:Two dose-escalation studies were performed to evaluate the safety and tolerability, and to define the maximum tolerated dose (MTD), of AZD1208 in AML and solid tumours. Secondary objectives were to evaluate the pharmacokinetics, pharmacodynamics (PD) and preliminary efficacy of AZD1208. RESULTS:Sixty-seven patients received treatment: 32 in the AML study over a 120-900 mg dose range, and 25 in the solid tumour study over a 120-800 mg dose range. Nearly all patients (98.5%) in both studies experienced adverse events, mostly gastrointestinal (92.5%). Dose-limiting toxicities included rash, fatigue and vomiting. AZD1208 was not tolerated at 900 mg, and the protocol-defined MTD was not confirmed. AZD1208 increased CYP3A4 activity after multiple dosing, resulting in increased drug clearance. There were no clinical responses; PD analysis showed biological activity of AZD1208. CONCLUSIONS:Despite the lack of single-agent clinical efficacy with AZD1208, PIM kinase inhibition may hold potential as an anticancer treatment, perhaps in combination with other agents
The molecular diversity of Luminal A breast tumors
Breast cancer is a collection of diseases with distinct molecular traits, prognosis, and therapeutic options. Luminal A breast cancer is the most heterogeneous, both molecularly and clinically. Using genomic data from over 1,000 Luminal AÂ tumors from multiple studies, we analyzed the copy number and mutational landscape of this tumor subtype. This integrated analysis revealed four major subtypes defined by distinct copy-number and mutation profiles. We identified an atypical Luminal A subtype characterized by high genomic instability, TP53 mutations, and increased Aurora kinase signaling; these genomic alterations lead to a worse clinical prognosis. Aberrations of chromosomes 1, 8, and 16, together with PIK3CA, GATA3, AKT1, and MAP3K1 mutations drive the other subtypes. Finally, an unbiased pathway analysis revealed multiple rare, but mutually exclusive, alterations linked to loss of activity of co-repressor complexes N-Cor and SMRT. These rare alterations were the most prevalent in Luminal A tumors and may predict resistance to endocrine therapy. Our work provides for a further molecular stratification of Luminal A breast tumors, with potential direct clinical implications. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s10549-013-2699-3) contains supplementary material, which is available to authorized users
Loss of PIM2 enhances the anti-proliferative effect of the pan-PIM kinase inhibitor AZD1208 in non-Hodgkin lymphomas
Background A promising therapeutic approach for aggressive B-cell Non-Hodgkin lymphoma (NHL), including diffuse large B-cell lymphoma (DLBCL), and Burkitt lymphoma (BL) is to target kinases involved in signal transduction and gene regulation. PIM1/2 serine/threonine kinases are highly expressed in activated B-cell-like DLBCL (ABC-DLBCL) with poor prognosis. In addition, both PIM kinases have a reported synergistic effect with c-MYC in mediating tumour development in several cancers, c-MYC gene being translocated to one of the immunoglobulin loci in nearly all BLs. Methods For these reasons, we tested the efficiency of several PIM kinase inhibitors (AZD1208, SMI4a, PIM1/2 inhibitor VI and Quercetagetin) in preventing proliferation of aggressive NHL-derived cell lines and compared their efficiency with PIM1 and/or PIM2 knockdown. Results We observed that most of the anti-proliferative potential of these inhibitors in NHL was due to an off-target effect. Interestingly, we present evidence of a kinase-independent function of PIM2 in regulating cell cycle. Moreover, combining AZD1208 treatment and PIM2 knockdown additively repressed cell proliferation. Conclusion Taken together, this study suggests that at least a part of PIM1/2 oncogenic potential could be independent of their kinase activity, justifying the limited anti-tumorigenic outcome of PIM-kinase inhibitors in NHL