11 research outputs found
Quantification of Tylosin Antibiotics in Cattle Waste
Antibiotics are used as prophylactic agents to promote growth and for treating infections in animals. However, the irrational use of antibiotics in livestock management is a significant cause of the development of antibioticresistant genes in the environment. Each year 2 million people suffer from the infections caused by bacteria which are resistant to antibiotics and 23,000 of these people are estimated to die because of antibiotic resistance. New drugs are continually coming into the market but are at the risk of developing resistance. Thus, there is a need for the development of analytical methods which can be used to monitor these antibiotic concentrations in environmental samples.
This research is focused on developing and validating a Solid Phase Extraction (SPE) procedure and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for quantifying tylosin antibiotic in cattle waste. Tylosin was extracted from cattle waste samples using Strata polymeric weak cation cartridges by adding a sodium-EDTA buffer solution and methanol. Chemical analysis of the extracted tylosin was performed using a Varian 212-LC HPLC and Agilent 500 Ion Trap mass spectrometric detector. The concentrations of tylosin in study group animals were compared with respect to the date of sampling and cattle body weight with a control group and results are presented
Design of Flexible and Dual Band Antenna for Vehicular Communication
The antenna with bowtie and meander lines shaped elements for the vehicular communication in this paper. The dimensions of the proposed antenna are 40.5*91.5*0.1. The substrate used in this antenna is polyamide substrate with a permittivity of 4.3. The implemented antenna is operated at cellular (975MHz) and C-V2X (5.9GHz) band. The efficiency of this proposed antenna is 99.5%. This paper describes the design of antenna with high efficiency vehicular roof mounted for V2V communication system used for ubiquitous intelligent systems. To enhance the connectivity among vehicles by providing seamless communication and to reduce initial access time using high performance antenna systems is the purpose of the ubiquitous intelligent systems. V2V communication efficiency depends on the antenna efficiency used for ubiquitous intelligent systems. We are proposing this antenna to increase the performance of the antenna by enhancing efficiency
Anaerobic digestion of livestock and poultry manures spiked with tetracycline antibiotics
Effect of Continuous In-Feed Administration of Tylosin to Feedlot Cattle on Antimicrobial Resistant Enterococci Using a Randomized Field Trial
Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes
Increased demand for animal protein is met by increased food animal production resulting in large quantities of manure. Animal producers, therefore, need sustainable agricultural practices to protect environmental health. Large quantities of antimicrobials are used in commercial food animal production. Consequently, antimicrobial-resistant bacteria and the resistance genes emerge and are excreted through feces. Manure management is essential for the safe disposal of animal waste. Lagoons, with or without covers, and anaerobic digesters, with the primary purpose of methane production, and composting, with the primary purpose of producing organic fertilizer, are widely used methods of manure treatment. We reviewed manure management practices and their impact on tetracycline resistance genes. Lagoons are maintained at ambient temperatures; especially uncovered lagoons are the least effective in removing tetracycline resistance genes. However, some modifications can improve the performance of lagoons: sequential use of uncovered lagoons and the use of covered lagoons resulted in a one-log reduction, while post-treatments such as biofiltration following covered lagoon treatment resulted in 3.4 log reduction. Mesophilic digestion of animal manure did not have any significant effect; only a 0.7 log reduction in tet(A) was observed in one study. While thermophilic anaerobic digesters are effective, if properly operated, they are expensive for animal producers. Aerobic thermophilic composting is a promising technology if optimized with its economic benefits. Composting of raw animal manure can result in up to a 2.5 log reduction, and postdigestion composting can reduce tetracycline resistance gene concentration by >80%. In general, manure management was not designed to mitigate antimicrobial resistance; future research is needed to optimize the economic benefits of biogas or organic fertilizer on the one hand and for the mitigation of foodborne pathogens and antimicrobial resistance on the other
Lagoon, Anaerobic Digestion, and Composting of Animal Manure Treatments Impact on Tetracycline Resistance Genes
Increased demand for animal protein is met by increased food animal production resulting in large quantities of manure. Animal producers, therefore, need sustainable agricultural practices to protect environmental health. Large quantities of antimicrobials are used in commercial food animal production. Consequently, antimicrobial-resistant bacteria and the resistance genes emerge and are excreted through feces. Manure management is essential for the safe disposal of animal waste. Lagoons, with or without covers, and anaerobic digesters, with the primary purpose of methane production, and composting, with the primary purpose of producing organic fertilizer, are widely used methods of manure treatment. We reviewed manure management practices and their impact on tetracycline resistance genes. Lagoons are maintained at ambient temperatures; especially uncovered lagoons are the least effective in removing tetracycline resistance genes. However, some modifications can improve the performance of lagoons: sequential use of uncovered lagoons and the use of covered lagoons resulted in a one-log reduction, while post-treatments such as biofiltration following covered lagoon treatment resulted in 3.4 log reduction. Mesophilic digestion of animal manure did not have any significant effect; only a 0.7 log reduction in tet(A) was observed in one study. While thermophilic anaerobic digesters are effective, if properly operated, they are expensive for animal producers. Aerobic thermophilic composting is a promising technology if optimized with its economic benefits. Composting of raw animal manure can result in up to a 2.5 log reduction, and postdigestion composting can reduce tetracycline resistance gene concentration by >80%. In general, manure management was not designed to mitigate antimicrobial resistance; future research is needed to optimize the economic benefits of biogas or organic fertilizer on the one hand and for the mitigation of foodborne pathogens and antimicrobial resistance on the other.</jats:p
Revealing Fatty Acid Heterogeneity in Staphylococcal Lipids with Isotope Labeling and RPLC–IM–MS
Lipidomics of homeoviscous adaptation to low temperatures in Staphylococcus aureus utilizing exogenous straight-chain unsaturated fatty acids
Abstract
It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media, and when growing in vivo in an infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain. We show that incorporation of C18:1Δ9 and its elongation product C20:1Δ9 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol (PG) and diglycosyldiacylglycerol (DGDG) lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin; however, this was not an obligatory requirement for cold adaptation. Enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms
Lipidomics of homeoviscous adaptation to low temperatures in Staphylococcus aureus utilizing exogenous straight-chain unsaturated fatty acids
It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media and when growing in vivo during infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain, supported by the fact that the incorporation of C18:1Δ9 into the membrane increased membrane fluidity in both strains. We show that the incorporation of C18:1Δ9 and its elongation product C20:1Δ11 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol and diglycosyldiacylglycerol lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin. The enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms. IMPORTANCE We show that Staphylococcus aureus can use its known ability to incorporate exogenous fatty acids to enhance its growth at low temperatures. Individual species of phosphatidylglycerols and diglycosyldiacylglycerols bearing one or two degrees of unsaturation derived from the incorporation of C18:1Δ9 at 12°C are described for the first time. In addition, enhanced production of the carotenoid staphyloxanthin occurs at low temperatures. The studies describe a biochemical reality underlying membrane biophysics. This is an example of homeoviscous adaptation to low temperatures utilizing exogenous fatty acids over the regulation of the biosynthesis of endogenous fatty acids. The studies have likely relevance to food safety in that unsaturated fatty acids may enhance the growth of S. aureus in the food environment
