5 research outputs found

    Microglia contribute to social behavioral adaptation to chronic stress

    Get PDF
    Microglial activation has been regarded mainly as an exacerbator of stress response, a common symptom in psychiatric disorders. This study aimed to determine whether microglia contribute to adaptive response of the brain and behavior toward stress using a mild and adaptive stress model - chronic restraint stress (CRS) - with wild type (WT) and CX3CR1-GFP (CX3CR1[G]) mice and human schizophrenia patients' data. Our results revealed that CRS did not exacerbate anxiety and depressive-like behaviors, but instead strengthened social dominance and short-term spatial learning in WT mice. Compared to WT and CX3CR1(+/G) heterozygous mice, CX3CR1(G/G) homozygotes were subordinate in social interaction before and after CRS. Microglia in WT mice underwent a series of region-specific changes involving their phagocytosis of presynaptic vesicular glutamate transporter 2 protein, contacts with synaptic elements, CD206(+)microglial proportion, and gene expressions such as Cx3cr1. By contrast, CX3CR1-deficient microglia showed decreased CD206(+) while increased MHCII+ subpopulations and hypo-ramification in the hippocampus, as well as sensitized polarization and morphological change in response to CRS. Furthermore, CD206(+) microglial abundancy was positively correlated with social dominancy and microglial ramification in CX3CR1-GFP mice. Moreover, CX3CR1 mRNA level was reduced in CRS-treated mouse brains and showed a smaller interactome with other brain genes in the dorsal-lateral prefrontal cortices of patients with schizophrenia. Our findings overall highlight microglia and its receptor CX3CR1 as key contributors in regulation of social behavioral adaptation to chronic stress.Peer reviewe

    Enhanced Anxiety and Olfactory Microglial Activation in Early-Stage Familial Alzheimer’s Disease Mouse Model

    No full text
    Anxiety is a known comorbidity and risk factor for conversion to neuroinflammation-mediated dementia in patients with Alzheimer’s disease (AD). Here, we investigated if anxiety occurred as an early endophenotype of mutant familial AD (5 × FAD) male mice and the underlying neuroinflammatory mechanisms. We observed that compared to wildtype (WT) littermates, 5 × FAD mice showed enhanced anxiety at as early as 2 months old (mo). Interestingly, these 5 × FAD male mice had concomitantly increased mRNA levels of pro-inflammatory cytokines such as interleukin 1 beta (Il1b) and tumor necrosis factor (Tnf) in the olfactory bulb (OB) but not the frontal cortex (FC). Increased expression of Tnf in the OB was significantly correlated with the anxious behavior in the FAD but not WT mice. Furthermore, we found more prominent microglial activation and morphological changes in the OB of 2 mo 5 × FAD mice, while only microglial ramification was seen in the FC. To understand if neuroinflammatory changes in the FC could occur at a later stage, we studied 5~6 mo male mice and found that Il1b, interleukin 18 (Il18), and Tnf were upregulated in the FC at this older age. Furthermore, we observed that numbers of microglia and macrophage as well as microglial synaptic pruning, as indicated by phagocytosis of presynaptic component of vesicular glutamate transporter-2, were increased in the OB but not the FC of 5~6 mo 5 × FAD mice. Our findings demonstrated the OB as a more sensitive brain region than the cerebral cortex for microglia-mediated neuroinflammation in association with anxiety in FAD mice and supported the notion that the OB can be an early-stage biomarker in AD

    Lipopolysaccharide-Induced Strain-Specific Differences in Neuroinflammation and MHC-I Pathway Regulation in the Brains of Bl6 and 129Sv Mice

    No full text
    Many studies have demonstrated significant mouse-strain-specific differences in behavior and response to pathogenic and pharmacological agents. This study seeks to characterize possible differences in microglia activation and overall severity of neuroinflammation in two widely used mouse strains, C57BL/6NTac (Bl6) and 129S6/SvEvTac (129Sv), in response to acute lipopolysaccharide (LPS) administration. Locomotor activity within the open field arena revealed similar 24 h motor activity decline in both strains. Both strains also exhibited significant bodyweight loss due to LPS treatment, although it was more severe in the Bl6 strain. Furthermore, LPS induced a hypothermic response in Bl6 mice, which was not seen in 129Sv. We found that 24 h LPS challenge significantly increased the inflammatory status of microglia in 129Sv mice. On the other hand, we observed that, under physiological conditions, microglia of Bl6 seemed to be in a higher immune-alert state. Gene and protein expression analysis revealed that LPS induces a significantly stronger upregulation of MHC-I-pathway-related components in the brain of Bl6 compared to 129Sv mice. The most striking difference was detected in the olfactory bulb, where we observed significant LPS-induced upregulation of MHC-I pathway components in Bl6 mice, whereas no alterations were observed in 129Sv. We observed significant positive correlations between bodyweight decline and expressions of MHC-I components in the olfactory bulbs of Bl6 mice and the frontal cortex of 129Sv, highlighting different brain regions most affected by LPS in these strains. Our findings suggest that the brains of Bl6 mice exist in a more immunocompetent state compared to 129Sv mice

    Enhanced Cognition and Neurogenesis in miR-146b Deficient Mice

    No full text
    The miR-146 family consists of two microRNAs (miRNAs), miR-146a and miR-146b, which are both known to suppress a variety of immune responses. Here in this study, we show that miR-146b is abundantly expressed in neuronal cells, while miR-146a is mainly expressed in microglia and astroglia of adult mice. Accordingly, miR-146b deficient (Mir146b-/-) mice exhibited anxiety-like behaviors and enhanced cognition. Characterization of cellular composition of Mir146b-/- mice using flow cytometry revealed an increased number of neurons and a decreased abundancy of astroglia in the hippocampus and frontal cortex, whereas microglia abundancy remained unchanged. Immunohistochemistry showed a higher density of neurons in the frontal cortex of Mir146b-/- mice, enhanced hippocampal neurogenesis as evidenced by an increased proliferation, and survival of newly generated cells with enhanced maturation into neuronal phenotype. No microglial activation or signs of neuroinflammation were observed in Mir146b-/- mice. Further analysis demonstrated that miR-146b deficiency is associated with elevated expression of glial cell line-derived neurotrophic factor (Gdnf) mRNA in the hippocampus, which might be at least in part responsible for the observed neuronal expansion and the behavioral phenotype. This hypothesis is partially supported by the positive correlation between performance of mice in the object recognition test and Gdnf mRNA expression in Mir146b-/- mice. Together, these results show the distinct function of miR-146b in controlling behaviors and provide new insights in understanding cell-specific function of miR-146b in the neuronal and astroglial organization of the mouse brain

    Sex difference in evolution of cognitive decline: studies on mouse model and the Dominantly Inherited Alzheimer Network cohort

    No full text
    Women carry a higher burden of Alzheimer’s disease (AD) compared to men, which is not accounted entirely by differences in lifespan. To identify the mechanisms underlying this effect, we investigated sex-specific differences in the progression of familial AD in humans and in APPswe/PS1ΔE9 mice. Activity dependent protein translation and associative learning and memory deficits were examined in APPswe/PS1ΔE9 mice and wild-type mice. As a human comparator group, progression of cognitive dysfunction was assessed in mutation carriers and non-carriers from DIAN (Dominantly Inherited Alzheimer Network) cohort. Female APPswe/PS1ΔE9 mice did not show recall deficits after contextual fear conditioning until 8 months of age. Further, activity dependent protein translation and Akt1-mTOR signaling at the synapse were impaired in male but not in female mice until 8 months of age. Ovariectomized APPswe/PS1ΔE9 mice displayed recall deficits at 4 months of age and these were sustained until 8 months of age. Moreover, activity dependent protein translation was also impaired in 4 months old ovariectomized APPswe/PS1ΔE9 mice compared with sham female APPswe/PS1ΔE9 mice. Progression of memory impairment differed between men and women in the DIAN cohort as analyzed using linear mixed effects model, wherein men showed steeper cognitive decline irrespective of the age of entry in the study, while women showed significantly greater performance and slower decline in immediate recall (LOGIMEM) and delayed recall (MEMUNITS) than men. However, when the performance of men and women in several cognitive tasks (such as Wechsler’s logical memory) are compared with the estimated year from expected symptom onset (EYO) we found no significant differences between men and women. We conclude that in familial AD patients and mouse models, females are protected, and the onset of disease is delayed as long as estrogen levels are intact
    corecore