1,280 research outputs found

    HASSKARL'S CINCHONA BARKS 1. HISTORICAL REVIEW

    Get PDF
    The preliminary results of alkaloid analyses of Hasskaii's cinchona bark collection, made in Peru in 1852/3' is given, and the identity and historical aspects of the material discussed in respect of the role the plants played in the Javanese plantations

    The time-dependent rearrangement of the epithelial basement membrane in human skin wounds

    Get PDF
    In 62 human skin wounds (surgical wounds, stab wounds and lacerations after surgical treatment) we analyzed the immunohistochemical localization of collagen IV in the epithelial basement membrane. In 27 of these wounds the distribution of collagen VII, which represents a specific component of the basement membrane of stratified epithelia, was also analyzed. We were able to demonstrate a virtually identical co-distribution of both collagen IV and VII in the wound area with no significant time-dependent differences in the appearance of both collagen types. Fragments of the epithelial basement membrane could be detected in the wound area from as early as 4 days after wounding and after 8 days a complete restitution of the epithelial basement membrane was observed. In all cases with a wound age of more than 21 days the basement membrane was completely reformed over the former lesional area. The period between 8 and 21 days after wounding was characterized by a wide variability ranging from complete restitution to deposition of basement membrane fragments or total lack of the epidermal basement membrane

    Eukaryotic Cell Toxicity and HSA Binding of [Ru(Me4phen)(bb7)]2+ and the Effect of Encapsulation in Cucurbit[10]uril

    Get PDF
    The toxicity (IC50) of a series of mononuclear ruthenium complexes containing bis[4(4â€Č-methyl-2,2â€Č-bipyridyl)]-1,n-alkane (bbn) as a tetradentate ligand against three eukaryotic cell lines—BHK (baby hamster kidney), Caco-2 (heterogeneous human epithelial colorectal adenocarcinoma) and Hep-G2 (liver carcinoma)—have been determined. The results demonstrate that cis-α-[Ru(Me4phen)(bb7)]2+ (designated as α-Me4phen-bb7, where Me4phen = 3,4,7,8-tetramethyl-1,10-phenanthroline) showed little toxicity toward the three cell lines, and was considerably less toxic than cis-α-[Ru(phen)(bb12)]2+ (α-phen-bb12) and the dinuclear complex [{Ru(phen)2}2{ÎŒ-bb12}]4+. Fluorescence spectroscopy was used to study the binding of the ruthenium complexes with human serum albumin (HSA). The binding of α-Me4phen-bb7 to the macrocyclic host molecule cucurbit[10]uril (Q[10]) was examined by NMR spectroscopy. Large upfield 1H NMR chemical shift changes observed for the methylene protons in the bb7 ligand upon addition of Q[10], coupled with the observation of several intermolecular ROEs in ROESY spectra, indicated that α-Me4phen-bb7 bound Q[10] with the bb7 methylene carbons within the cavity and the metal center positioned outside one of the portals. Simple molecular modeling confirmed the feasibility of the binding model. An α-Me4phen-bb7-Q[10] binding constant of 9.9 ± 0.2 × 106 M−1 was determined by luminescence spectroscopy. Q[10]-encapsulation decreased the toxicity of α-Me4phen-bb7 against the three eukaryotic cell lines and increased the binding affinity of the ruthenium complex for HSA. Confocal microscopy experiments indicated that the level of accumulation of α-Me4phen-7 in BHK cells is not significantly affected by Q[10]-encapsulation. Taken together, the combined results suggest that α-Me4phen-7 could be a good candidate as a new antimicrobial agent, and Q[10]-encapsulation could be a method to improve the pharmacokinetics of the ruthenium complex

    Metabolic changes in quinolinic acid-lesioned rat striatum detected noninvasively by in vivo 1H NMR spectroscopy

    Get PDF
    Intrastriatal injection of quinolinic acid (QA) provides an animal model of Huntington disease. In vivo 1H NMR spectroscopy was used to measure the neurochemical profile non-invasively in seven animals 5 days after unilateral injection of 150 nmol of QA. Concentration changes of 16 metabolites were measured from 22 Όl volume at 9.4 T. The increase of glutamine ((+25 ± 14)%, mean ± SD, n = 7) and decrease of glutamate (-12 ± 5)%, N-acetylaspartate (-17 ± 6)%, taurine (-14 ± 6)% and total creatine (-9 ± 3%) were discernible in each individual animal (P < 0.005, paired t-test). Metabolite concentrations in control striata were in excellent agreement with biochemical literature. The change in glutamate plus glutamine was not significant, implying a shift in the glutamate-glutamine interconversion, consistent with a metabolic defect at the level of neuronal-glial metabolic trafficking. The most significant indicator of the lesion, however, were the changes in glutathione ((-19 ± 9)%, P < 0.002)), consistent with oxidative stress. From a comparison with biochemical literature we conclude that high-resolution in vivo 1H NMR spectroscopy accurately reflects the neurochemical changes induced by a relatively modest dose of QA, which permits one to longitudinally follow mitochondrial function, oxidative stress and glial-neuronal metabolic trafficking as well as the effects of treatment in this model of Huntington disease. © 2001 Wiley-Liss, Inc

    Neurochemical changes in Huntington R6/2 mouse striatum detected by in vivo 1H NMR spectroscopy

    Get PDF
    The neurochemical profile of the striatum of R6/2 Huntington's disease mice was examined at different stages of pathogenesis using in vivo1H NMR spectroscopy at 9.4 T. Between 8 and 12 weeks, R6/2 mice exhibited distinct changes in a set of 17 quantifiable metabolites compared with littermate controls. Concentrations of creatine, glycerophosphorylcholine, glutamine and glutathione increased and N-acetylaspartate decreased at 8 weeks. By 12 weeks, concentrations of phosphocreatine, taurine, ascorbate, glutamate, and myo-inositol increased and phophorylethanolamine decreased. These metabolic changes probably reflected multiple processes, including compensatory processes to maintain homeostasis, active at different stages in the development of HD. The observed changes in concentrations suggested impairment of neurotransmission, neuronal integrity and energy demand, and increased membrane breakdown, gliosis, and osmotic and oxidative stress. Comparisons between metabolite concentrations from individual animals clearly distinguished HD transgenics from non-diseased littermates and identified possible markers of disease progression. Metabolic changes in R6/2 striata were distinctly different from those observed previously in the quinolinic acid and 3NP models of HD. Longitudinal monitoring of changes in these metabolites may provide quantifiable measures of disease progression and treatment effects in both mouse models of HD and patients. © 2007 The Authors

    Impact of Sleep and Circadian Disruption on Energy Balance and Diabetes: A Summary of Workshop Discussions

    Get PDF
    A workshop was held at the National Institute for Diabetes and Digestive and Kidney Diseases with a focus on the impact of sleep and circadian disruption on energy balance and diabetes. The workshop identified a number of key principles for research in this area and a number of specific opportunities. Studies in this area would be facilitated by active collaboration between investigators in sleep/circadian research and investigators in metabolism/diabetes. There is a need to translate the elegant findings from basic research into improving the metabolic health of the American public. There is also a need for investigators studying the impact of sleep/circadian disruption in humans to move beyond measurements of insulin and glucose and conduct more in-depth phenotyping. There is also a need for the assessments of sleep and circadian rhythms as well as assessments for sleep-disordered breathing to be incorporated into all ongoing cohort studies related to diabetes risk. Studies in humans need to complement the elegant short-term laboratory-based human studies of simulated short sleep and shift work etc. with studies in subjects in the general population with these disorders. It is conceivable that chronic adaptations occur, and if so, the mechanisms by which they occur needs to be identified and understood. Particular areas of opportunity that are ready for translation are studies to address whether CPAP treatment of patients with pre-diabetes and obstructive sleep apnea (OSA) prevents or delays the onset of diabetes and whether temporal restricted feeding has the same impact on obesity rates in humans as it does in mice

    Longitudinal Analysis of Quality of Life, Clinical, Radiographic, Echocardiographic, and Laboratory Variables in Dogs with Preclinical Myxomatous Mitral Valve Disease Receiving Pimobendan or Placebo: The EPIC Study

    Get PDF
    Background: Changes in clinical variables associated with the administration of pimobendan to dogs with preclinical myxomatous mitral valve disease (MMVD) and cardiomegaly have not been described. Objectives: To investigate the effect of pimobendan on clinical variables and the relationship between a change in heart size and the time to congestive heart failure (CHF) or cardiac-related death (CRD) in dogs with MMVD and cardiomegaly. To determine whether pimobendan-treated dogs differ from dogs receiving placebo at onset of CHF. Animals: Three hundred and fifty-four dogs with MMVD and cardiomegaly. Materials and Methods: Prospective, blinded study with dogs randomized (ratio 1:1) to pimobendan (0.4-0.6 mg/kg/d) or placebo. Clinical, laboratory, and heart-size variables in both groups were measured and compared at different time points (day 35 and onset of CHF) and over the study duration. Relationships between short-term changes in echocardiographic variables and time to CHF or CRD were explored. Results: At day 35, heart size had reduced in the pimobendan group:median change in (Delta) LVIDDN -0.06 (IQR:-0.15 to + 0.02), P < 0.0001, and LA:Ao -0.08 (IQR:-0.23 to + 0.03), P < 0.0001. Reduction in heart size was associated with increased time to CHF or CRD. Hazard ratio for a 0.1 increase in Delta LVIDDN was 1.26, P = 0.0003. Hazard ratio for a 0.1 increase in Delta LA:Ao was 1.14, P = 0.0002. At onset of CHF, groups were similar. Conclusions and Clinical Importance: Pimobendan treatment reduces heart size. Reduced heart size is associated with improved outcome. At the onset of CHF, dogs treated with pimobendan were indistinguishable from those receiving placebo

    Effect of Pimobendan in Dogs with Preclinical Myxomatous Mitral Valve Disease and Cardiomegaly: The EPIC Study - A Randomized Clinical Trial

    Get PDF
    Background: Pimobendan is effective in treatment of dogs with congestive heart failure (CHF) secondary to myxomatous mitral valve disease (MMVD). Its effect on dogs before the onset of CHF is unknown. Hypothesis/Objectives: Administration of pimobendan (0.4-0.6 mg/kg/d in divided doses) to dogs with increased heart size secondary to preclinical MMVD, not receiving other cardiovascular medications, will delay the onset of signs of CHF, cardiac-related death, or euthanasia. Animals: 360 client-owned dogs with MMVD with left atrial-to-aortic ratio >= 1.6, normalized left ventricular internal diameter in diastole >= 1.7, and vertebral heart sum >10.5. Methods: Prospective, randomized, placebo-controlled, blinded, multicenter clinical trial. Primary outcome variable was time to a composite of the onset of CHF, cardiac-related death, or euthanasia. Results: Median time to primary endpoint was 1228 days (95% CI: 856-NA) in the pimobendan group and 766 days (95% CI: 667-875) in the placebo group (P = .0038). Hazard ratio for the pimobendan group was 0.64 (95% CI: 0.47-0.87) compared with the placebo group. The benefit persisted after adjustment for other variables. Adverse events were not different between treatment groups. Dogs in the pimobendan group lived longer (median survival time was 1059 days (95% CI: 952-NA) in the pimobendan group and 902 days (95% CI: 747-1061) in the placebo group) (P = .012). Conclusions and Clinical Importance: Administration of pimobendan to dogs with MMVD and echocardiographic and radiographic evidence of cardiomegaly results in prolongation of preclinical period and is safe and well tolerated. Prolongation of preclinical period by approximately 15 months represents substantial clinical benefit
    • 

    corecore