44 research outputs found
Magnetic correlations and quantum criticality in the insulating antiferromagnetic, insulating spin liquid, renormalized Fermi liquid, and metallic antiferromagnetic phases of the Mott system V_2O_3
Magnetic correlations in all four phases of pure and doped vanadium
sesquioxide V_2O_3 have been examined by magnetic thermal neutron scattering.
While the antiferromagnetic insulator can be accounted for by a Heisenberg
localized spin model, the long range order in the antiferromagnetic metal is an
incommensurate spin-density-wave, resulting from a Fermi surface nesting
instability. Spin dynamics in the strongly correlated metal are dominated by
spin fluctuations in the Stoner electron-hole continuum. Furthermore, our
results in metallic V_2O_3 represent an unprecedentedly complete
characterization of the spin fluctuations near a metallic quantum critical
point, and provide quantitative support for the SCR theory for itinerant
antiferromagnets in the small moment limit. Dynamic magnetic correlations for
energy smaller than k_BT in the paramagnetic insulator carry substantial
magnetic spectral weight. However, the correlation length extends only to the
nearest neighbor distance. The phase transition to the antiferromagnetic
insulator introduces a sudden switching of magnetic correlations to a different
spatial periodicity which indicates a sudden change in the underlying spin
Hamiltonian. To describe this phase transition and also the unusual short range
order in the paramagnetic state, it seems necessary to take into account the
orbital degrees of freedom associated with the degenerate d-orbitals at the
Fermi level in V_2O_3.Comment: Postscript file, 24 pages, 26 figures, 2 tables, accepted by Phys.
Rev.
Transmission electron microscopy characterization of fluorescently labelled amyloid β 1-40 and α-synuclein aggregates
<p>Abstract</p> <p>Background</p> <p>Fluorescent tags, including small organic molecules and fluorescent proteins, enable the localization of protein molecules in biomedical research experiments. However, the use of these labels may interfere with the formation of larger-scale protein structures such as amyloid aggregates. Therefore, we investigate the effects of some commonly used fluorescent tags on the morphologies of fibrils grown from the Alzheimer's disease-associated peptide Amyloid β 1-40 (Aβ40) and the Parkinson's disease-associated protein α-synuclein (αS).</p> <p>Results</p> <p>Using transmission electron microscopy (TEM), we verify that N-terminal labeling of Aβ40 with AMCA, TAMRA, and Hilyte-Fluor 488 tags does not prevent the formation of protofibrils and amyloid fibrils of various widths. We also measure the two-photon action cross-section of Aβ40 labelled with Hilyte Fluor 488 and demonstrate that this tag is suitable for use with two-photon fluorescence techniques. Similarly, we find that Alexa Fluor 488 labelling of αS variant proteins near either the N or C terminus (position 9 or 130) does not interfere with the formation of amyloid and other types of αS fibrils. We also present TEM images of fibrils grown from αS C-terminally labelled with enhanced green fluorescent protein (EGFP). Near neutral pH, two types of αS-EGFP fibrils are observed via TEM, while denaturation of the EGFP tag leads to the formation of additional species.</p> <p>Conclusions</p> <p>We demonstrate that several small extrinsic fluorescent tags are compatible with studies of amyloid protein aggregation. However, although fibrils can be grown from αS labelled with EGFP, the conformation of the fluorescent protein tag affects the observed aggregate morphologies. Thus, our results should assist researchers with label selection and optimization of solution conditions for aggregation studies involving fluorescence techniques.</p
Non-adiabatic small polaron hopping in the n=3 Ruddlesden-Popper compound Ca4Mn3O10
Magnetotransport properties of the compound Ca4Mn3O10 are interpreted in
terms of activated hopping of small magnetic polarons in the non-adiabatic
regime. Polarons are most likely formed around Mn3+ sites created by oxygen
substoichiometry. The application of an external field reduces the size of the
magnetic contribution to the hopping barrier and thus produces an increase in
the conductivity .We argue that the change in the effective activation energy
around TN is due to the crossover to VRH conduction as antiferromagnetic order
sets in.Comment: 29 pages, 7 figure