274 research outputs found

    Thermonuclear Bursts with Short Recurrence Times from Neutron Stars Explained by Opacity-Driven Convection

    Full text link
    Thermonuclear flashes of hydrogen and helium accreted onto neutron stars produce the frequently observed Type I X-ray bursts. It is the current paradigm that almost all material burns in a burst, after which it takes hours to accumulate fresh fuel for the next burst. In rare cases, however, bursts are observed with recurrence times as short as minutes. We present the first one-dimensional multi-zone simulations that reproduce this phenomenon. Bursts that ignite in a relatively hot neutron star envelope leave a substantial fraction of the fuel unburned at shallow depths. In the wake of the burst, convective mixing events driven by opacity bring this fuel down to the ignition depth on the observed timescale of minutes. There, unburned hydrogen mixes with the metal-rich ashes, igniting to produce a subsequent burst. We find burst pairs and triplets, similar to the observed instances. Our simulations reproduce the observed fraction of bursts with short waiting times of ~30%, and demonstrate that short recurrence time bursts are typically less bright and of shorter duration.Comment: 11 pages, 15 figures, accepted for publication in Ap

    Photospheric radius expansion in superburst precursors from neutron stars

    Full text link
    Thermonuclear runaway burning of carbon is in rare cases observed from accreting neutron stars as day-long X-ray flares called superbursts. In the few cases where the onset is observed, superbursts exhibit a short precursor burst at the start. In each instance, however, the data was of insufficient quality for spectral analysis of the precursor. Using data from the propane anti-coincidence detector of the PCA instrument on RXTE, we perform the first detailed time resolved spectroscopy of precursors. For a superburst from 4U 1820-30 we demonstrate the presence of photospheric radius expansion. We find the precursor to be 1.4-2 times more energetic than other short bursts from this source, indicating that the burning of accreted helium is insufficient to explain the full precursor. Shock heating would be able to account for the lacking energy. We argue that this precursor is a strong indication that the superburst starts as a detonation, and that a shock induces the precursor. Furthermore, we employ our technique to study the superexpansion phase of the same superburst in greater detail.Comment: 9 pages, 6 figures, submitted to Ap
    corecore