45 research outputs found

    Do New Drugs Increase Life Expectancy? A Critique of a Manhattan Institute Paper

    Get PDF
    A recent study published by the Manhattan Institute “Why Has Longevity Increased More in Some States than in Others? The Role of Medical Innovation and Other Factors,” purported to show that the more rapid adoption of new drugs has substantial benefits in the form of increased life expectancy, higher productivity and lower non-drug health care expenditures. This study has been cited as evidence supporting the more rapid acceptance of new drugs in Medicaid, Medicare, and other public programs and has helped to shape public debate on the value of new drugs. This analysis questions the key conclusions of the study. It points out that the key statistical regressions appear to be misspecified, since they show anomalies such as a negative correlation between income growth and life expectancy and find no relationship between education and productivity growth. Methodological flaws addressed include lack of adjustment for infant mortality rates; inadequate proxy measures of health status; lack of adjustment for ages of individuals and other sociodemographic factors; inherent problems with the definition of drug age, or ‘vintage;’ and the failure to consider reverse causation as an obvious explanation for several findings. The Manhattan Institute study does not provide reliable evidence for favoring adoption of newer drugs in either public or private health care programs

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Clot embolization studies and computational framework for embolization in a canonical tube model

    No full text
    Abstract Despite recent advances in the development of computational methods of modeling thrombosis, relatively little effort has been made in developing methods of modeling blood clot embolization. Such a model would provide substantially greater understanding of the mechanics of embolization, as in-vitro and in-vivo characterization of embolization is difficult. Here, a method of computationally simulating embolization is developed. Experiments are performed of blood clots formed in a polycarbonate tube, where phosphate-buffered saline is run through the tube at increasing flow rates until the clot embolizes. The experiments revealed embolization can be initiated by leading edge and trailing edge detachment or by non-uniform detachment. Stress-relaxation experiments are also performed to establish values of constitutive parameters for subsequent simulations. The embolization in the tube is reproduced in silico using a multiphase volume-of-fluid approach, where the clot is modeled as viscoelastic. By varying the constitutive parameters at the wall, embolization can be reproduced in-silico at varying flow rates, and a range of constitutive parameters fitting the experiments is reported. Here, the leading edge embolization is simulated at flow rates consistent with the experiments demonstrating excellent agreement in this specific behavior
    corecore