9,013 research outputs found

    Investigation of Biochemical Stabilization of Aqueous Solutions of Organic Compounds by Unsaturated Flow Through Porous Media Semiannual Status Report

    Get PDF
    Biochemical stabilization of aqueous solutions of urine by unsaturated flow through columns of sand ripened with settled municipal sewag

    3D radiative transfer: Continuum and line scattering in non-spherical winds from OB stars

    Full text link
    Context: State of the art quantitative spectroscopy of OB-stars compares synthetic spectra (calculated by means of 1D, spherically symmetric computer codes) with observations. Certain stellar atmospheres, however, show strong deviations from spherical symmetry, and need to be treated in 3D. Aims: We present a newly developed 3D radiative transfer code, tailored to the solution of the radiation field in rapidly expanding stellar atmospheres. We apply our code to the continuum transfer in wind-ablation models, and to the UV resonance line formation in magnetic winds. Methods: We have used a 3D finite-volume method for the solution of the equation of radiative transfer, to study continuum- and line-scattering problems. Convergence has been accelerated by a non-local approximate Lambda-iteration scheme. Particular emphasis has been put on careful (spherically symmetric) test cases. Results: Typical errors of the source functions, when compared to 1D solutions, are of the order of 10-20 %, and increase for optically thick continua. In circumstellar discs, the radiation temperatures in the (optically thin) transition region from wind to disc are quite similar to corresponding values in the wind. For MHD simulations of dynamical magnetospheres, the line profiles, calculated with our 3D code, agree well with previous solutions using a 3D-SEI method. When compared with profiles resulting from the `analytic dynamical magnetosphere' (ADM) model, significant differences become apparent. Conclusions: Due to similar radiation temperatures in the wind and the transition region to the disc, the same line-strength distribution can be applied within radiation hydrodynamic calculations for circumstellar discs in `accreting high-mass stars'. To properly describe the UV line formation in dynamical magnetospheres, the ADM model needs to be further developed, at least in a large part of the outer wind

    Quantitative Description of V2O3V_2O_3 by the Hubbard Model in Infinite Dimensions

    Full text link
    We show that the analytic single-particle density of states and the optical conductivity for the half-filled Hubbard model on the Bethe lattice in infinite dimensions describe quantitatively the behavior of the gap and the kinetic energy ratio of the correlated insulator V2O3V_2O_3. The form of the optical conductivity shows ω3/2\omega^{3/2} rising and is quite similar to the experimental data, and the density of states shows ω1/2\omega^{1/2} behavior near the band edges.Comment: 9 pages, revtex, 4 figures upon reques

    Meta-nematic transitions in a bilayer system: Application to the bilayer ruthenate

    Full text link
    It was suggested that the two consecutive metamagnetic transitions and the large residual resistivity discovered in Sr3_3Ru2_2O7_7 can be understood via the nematic order and its domains in a single layer system. However, a recently reported anisotropy between two longitudinal resistivities induced by tilting the magnetic field away from the c-axis cannot be explained within the single layer nematic picture. To fill the gap in our understanding within the nematic order scenario, we investigate the effects of bilayer coupling and in-plane magnetic field on the electronic nematic phases in a bilayer system. We propose that the in-plane magnetic field in the bilayer system modifies the energetics of the domain formation, since it breaks the degeneracy of two different nematic orientations. Thus the system reveals a pure nematic phase with a resistivity anisotropy in the presence of an in-plane magnetic field. In addition to the nematic phase, the bilayer coupling opens a novel route to a hidden nematic phase that preserves the x-y symmetry of the Fermi surfaces.Comment: 8 pages, 6 figure

    Nematicity as a route to a magnetic field-induced spin density wave order; application to the high temperature cuprates

    Full text link
    The electronic nematic order characterized by broken rotational symmetry has been suggested to play an important role in the phase diagram of the high temperature cuprates. We study the interplay between the electronic nematic order and a spin density wave order in the presence of a magnetic field. We show that a cooperation of the nematicity and the magnetic field induces a finite coupling between the spin density wave and spin-triplet staggered flux orders. As a consequence of such a coupling, the magnon gap decreases as the magnetic field increases, and it eventually condenses beyond a critical magnetic field leading to a field-induced spin density wave order. Both commensurate and incommensurate orders are studied, and the experimental implications of our findings are discussed.Comment: 5 pages, 3 figure

    Interplay between parallel and diagonal electronic nematic phases in interacting systems

    Full text link
    An electronic nematic phase can be classified by a spontaneously broken discrete rotational symmetry of a host lattice. In a square lattice, there are two distinct nematic phases. The parallel nematic phase breaks xx and yy symmetry, while the diagonal nematic phase breaks the diagonal (x+y)(x+y) and anti-diagonal (x−y)(x-y) symmetry. We investigate the interplay between the parallel and diagonal nematic orders using mean field theory. We found that the nematic phases compete with each other, while they coexist in a finite window of parameter space. The quantum critical point between the diagonal nematic and isotropic phases exists, and its location in a phase diagram depends on the topology of the Fermi surface. We discuss the implication of our results in the context of neutron scattering and Raman spectroscopy measurements on La2−x_{2-x}Srx_xCuO4_4.Comment: 8 pages, 10 figure
    • …
    corecore