16 research outputs found

    Liver immunology and its role in inflammation and homeostasis

    Get PDF
    The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in combination with regular exposure to dietary and microbial products, creates the potential for excessive immune activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential to maintain liver homeostasis. Failure to clear ‘dangerous’ stimuli or regulate appropriately activated immune mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy. In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to treat liver disease

    Novel perspectives in the management of decompensated cirrhosis

    No full text
    The current approaches to the management of patients with decompensated cirrhosis are based on targeted strategies aimed at preventing or treating specific complications of the disease. The improved knowledge of the pathophysiological background of advanced cirrhosis, represented by a sustained systemic inflammation strictly linked to a circulatory dysfunction, provides a novel paradigm for the management of these patients, with the ambitious target of modifying the course of the disease by preventing the onset of complications and multiorgan failure; these interventions will eventually improve patients\u2019 quality of life, prolong survival and reduce health-care costs. Besides aetiological treatments, these goals could be achieved by persistently antagonizing key pathophysiological events, such as portal hypertension, abnormal bacterial translocation from the gut, liver damage, systemic inflammation, circulatory dysfunction and altered immunological responses. Interestingly, in addition to strategies based on new therapeutic agents, these targets can be tackled by employing drugs that are already used in patients with cirrhosis for different indications or in other clinical settings, including non-absorbable oral antibiotics, non-selective \u3b2-blockers, human albumin and statins. The scope of the present Review includes reporting updated information on the treatments that promise to influence the course of advanced cirrhosis and thus act as disease-modifying agents
    corecore