2,629 research outputs found
The Transition State in a Noisy Environment
Transition State Theory overestimates reaction rates in solution because
conventional dividing surfaces between reagents and products are crossed many
times by the same reactive trajectory. We describe a recipe for constructing a
time-dependent dividing surface free of such recrossings in the presence of
noise. The no-recrossing limit of Transition State Theory thus becomes
generally available for the description of reactions in a fluctuating
environment
Stochastic Transition States: Reaction Geometry amidst Noise
Classical transition state theory (TST) is the cornerstone of reaction rate
theory. It postulates a partition of phase space into reactant and product
regions, which are separated by a dividing surface that reactive trajectories
must cross. In order not to overestimate the reaction rate, the dynamics must
be free of recrossings of the dividing surface. This no-recrossing rule is
difficult (and sometimes impossible) to enforce, however, when a chemical
reaction takes place in a fluctuating environment such as a liquid.
High-accuracy approximations to the rate are well known when the solvent forces
are treated using stochastic representations, though again, exact no-recrossing
surfaces have not been available. To generalize the exact limit of TST to
reactive systems driven by noise, we introduce a time-dependent dividing
surface that is stochastically moving in phase space such that it is crossed
once and only once by each transition path
Action-derived molecular dynamics in the study of rare events
We present a practical method to generate classical trajectories with fixed
initial and final boundary conditions. Our method is based on the minimization
of a suitably defined discretized action. The method finds its most natural
application in the study of rare events. Its capabilities are illustrated by
non-trivial examples. The algorithm lends itself to straightforward
parallelization, and when combined with molecular dynamics (MD) it promises to
offer a powerful tool for the study of chemical reactions.Comment: 7 Pages, 4 Figures (3 in color), submitted to Phys. Rev. Let
Brain connectivity analysis: a short survey
This short survey the reviews recent literature on brain connectivity studies. It encompasses all forms of static and dynamic
connectivity whether anatomical, functional, or effective. The last decade has seen an ever increasing number of studies devoted
to deduce functional or effective connectivity, mostly from functional neuroimaging experiments. Resting state conditions have
become a dominant experimental paradigm, and a number of resting state networks, among them the prominent default mode
network, have been identified. Graphical models represent a convenient vehicle to formalize experimental findings and to closely
and quantitatively characterize the various networks identified. Underlying these abstract concepts are anatomical networks, the
so-called connectome, which can be investigated by functional imaging techniques as well. Future studies have to bridge the gap between anatomical neuronal connections and related functional or effective connectivities
6-(4-Methoxyphenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-carbaldehyde
The 4-methoxyphenyl residue in the title compound, C21H19NO2, is oriented at a dihedral angle of 54.6 (5)° with respect to the phenyl ring and at a dihedral angle of 52.5 (8)° with respect to the pyrrole ring of the pyrrolizine system. The phenyl ring is oriented at a dihedral angle of 36.2 (5)° with respect to the pyrrole ring. The methoxy group makes a C—C—O—C torsion angle of 3.8 (9)° with the attached benzene ring
6-(4-Chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-carbaldehyde
The 4-chlorophenyl residue in the title compound, C20H16ClNO, is oriented at a dihedral angle of 53.6 (3)° towards the phenyl ring and 42.0 (9)° towards the pyrrole ring of the pyrrolizine template. The phenyl ring is oriented at a dihedral angle of 45.4 (4)° towards the pyrrole ring
Accountability, Strategy, and International Non-Governmental Organizations
Increased prominence and greater influence expose international non-governmental development and environmental organizations (INGOs) to increased demands for accountability from a wide variety of stakeholdersdonors, beneficiaries, staffs, and partners among others. This paper focuses on developing the concept of INGO accountability, first as an abstract concept and then as a strategic idea with very different implications for different INGO strategies. We examine those implications for INGOs that emphasize service delivery, capacity-building, and policy influence. We propose that INGOs committed to service delivery may owe more accountability to donors and service regulators; capacity-building INGOs may be particularly obligated to clients whose capacities are being enhanced; and policy influence INGOs may be especially accountable to political constituencies and to influence targets. INGOs that are expanding their activities to include new initiatives may need to reorganize their accountability systems to implement their strategies effectively. This publication is Hauser Center Working Paper No. 7. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers
On contractions of classical basic superalgebras
We define a class of orthosymplectic and unitary
superalgebras which may be obtained from and
by contractions and analytic continuations in a similar way as the
special linear, orthogonal and the symplectic Cayley-Klein algebras are
obtained from the corresponding classical ones. Casimir operators of
Cayley-Klein superalgebras are obtained from the corresponding operators of the
basic superalgebras. Contractions of and are regarded as
an examples.Comment: 15 pages, Late
NuSTAR and Suzaku X-ray Spectroscopy of NGC 4151: Evidence for Reflection from the Inner Accretion Disk
We present X-ray timing and spectral analyses of simultaneous 150 ks Nuclear
Spectroscopic Telescope Array (NuSTAR) and Suzaku X-ray observations of the
Seyfert 1.5 galaxy NGC 4151. We disentangle the continuum emission, absorption,
and reflection properties of the active galactic nucleus (AGN) by applying
inner accretion disk reflection and absorption-dominated models. With a
time-averaged spectral analysis, we find strong evidence for relativistic
reflection from the inner accretion disk. We find that relativistic emission
arises from a highly ionized inner accretion disk with a steep emissivity
profile, which suggests an intense, compact illuminating source. We find a
preliminary, near-maximal black hole spin a>0.9 accounting for statistical and
systematic modeling errors. We find a relatively moderate reflection fraction
with respect to predictions for the lamp post geometry, in which the
illuminating corona is modeled as a point source. Through a time-resolved
spectral analysis, we find that modest coronal and inner disk reflection flux
variation drives the spectral variability during the observations. We discuss
various physical scenarios for the inner disk reflection model, and we find
that a compact corona is consistent with the observed features.Comment: 20 pages, 12 figures, accepted for publication in Ap
- …