5 research outputs found
Geometry of Uncertainty Relations for Linear Combinations of Position and Momentum
For a quantum particle with a single degree of freedom, we derive preparational sum and product uncertainty relations satisfied by N linear combinations of position and momentum observables. The bounds depend on their degree of incompatibility defined by the area of a parallelogram in an N-dimensional coefficient space. Maximal incompatibility occurs if the observables give rise to regular polygons in phase space. We also conjecture a Hirschman-type uncertainty relation for N observables linear in position and momentum, generalizing the original relation which lower-bounds the sum of the position and momentum Shannon entropies of the particle
Universality in Uncertainty Relations for a Quantum Particle
A general theory of preparational uncertainty relations for a quantum particle in one spatial dimension is developed. We derive conditions which determine whether a given smooth function of the particle's variances and its covariance is bounded from below. Whenever a global minimum exists, an uncertainty relation has been obtained. The squeezed number states of a harmonic oscillator are found to be universal: no other pure or mixed states will saturate any such relation. Geometrically, we identify a convex uncertainty region in the space of second moments which is bounded by the inequality derived by Robertson and Schrödinger. Our approach provides a unified perspective on existing uncertainty relations for a single continuous variable, and it leads to new inequalities for second moments which can be checked experimentally