9 research outputs found
Métamatériaux à biréfringence extraordinaire pour le THz, le micro-onde et le visible
National audience 
Conception de lames demi-onde ultra-minces pour les gammes micro-onde et optique
National audience 
Exalted transmission through a periodic structure of metallic C-shaped apertures sub-wavelength
International audience<span style="left: 122.6px; top: 411.588px; font-size: 20px; font-family: serif; transform: scaleX(1.05058);">The objective of this work is to study the properties of the t</span><span style="left: 620.8px; top: 411.588px; font-size: 20px; font-family: serif; transform: scaleX(1.02406);">ransmission through a periodic </span><span style="left: 118px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00073);">array</span><span style="left: 164.2px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00926);">of the sub</span><span style="left: 243.8px; top: 434.588px; font-size: 20px; font-family: serif;">-</span><span style="left: 250.6px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00027);">wavelength</span><span style="left: 348.2px; top: 434.588px; font-size: 20px; font-family: serif;">C</span><span style="left: 361.6px; top: 434.588px; font-size: 20px; font-family: serif;">-</span><span style="left: 368.2px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00027);">shaped</span><span style="left: 429px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00379);">apertures engraved</span><span style="left: 586.4px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1.01037);">in a metal film</span><span style="left: 710.2px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00306);">(see figure</span><span style="left: 800.6px; top: 434.588px; font-size: 20px; font-family: serif;">1</span><span style="left: 810.6px; top: 434.588px; font-size: 20px; font-family: serif;">-</span><span style="left: 817.4px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00097);">a)</span><span style="left: 832.8px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1);">. </span><span style="left: 842.8px; top: 434.588px; font-size: 20px; font-family: serif; transform: scaleX(1);">The </span><span style="left: 118px; top: 457.588px; font-size: 20px; font-family: serif; transform: scaleX(1.05196);">numerical study of this type of structure is realized by the Finite Difference Time Domain </span><span style="left: 118px; top: 480.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00816);">(FDTD), which is a house code developed </span><span style="left: 464.4px; top: 480.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00853);">within our team. The annular C</span><span style="left: 717.6px; top: 480.588px; font-size: 20px; font-family: serif;">-</span><span style="left: 724.4px; top: 480.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00497);">shaped structure is </span><span style="left: 118px; top: 503.588px; font-size: 20px; font-family: serif; transform: scaleX(0.978441);">compact and has the advantage of having the fundamental mode TE</span><span style="left: 698.194px; top: 512.062px; font-size: 13.4px; font-family: serif; transform: scaleX(1);">10</span><span style="left: 720.4px; top: 503.588px; font-size: 20px; font-family: serif; transform: scaleX(0.975432);">(see figure 1</span><span style="left: 827.6px; top: 503.588px; font-size: 20px; font-family: serif;">-</span><span style="left: 834.2px; top: 503.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00046);">b) </span><span style="left: 859.8px; top: 503.588px; font-size: 20px; font-family: serif; transform: scaleX(0.988417);">at </span><span style="left: 118px; top: 526.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00049);">wavelengths much greater than those of the fundamental modes of the other guiding structures </span><span style="left: 118px; top: 549.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00773);">such as the coaxial cavity</span><span style="left: 328.8px; top: 549.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00901);">[1], </span><span style="left: 362.8px; top: 549.588px; font-size: 20px; font-family: serif;">r</span><span style="left: 369.4px; top: 549.588px; font-size: 20px; font-family: serif; transform: scaleX(1.0006);">ectangular</span><span style="left: 458px; top: 549.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00086);">[2]</span><span style="left: 481.6px; top: 549.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00231);">, etc. </span><span style="left: 525.4px; top: 549.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00556);">and while moving away from Rayleigh and </span><span style="left: 118px; top: 572.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00368);">plasmonic anomalies. </span><span style="left: 307.6px; top: 572.588px; font-size: 20px; font-family: serif; transform: scaleX(1.01057);">In addition to its compactness, this structure provides a breaking </span><span style="left: 118px; top: 595.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00698);">symmetry and therefore it is promising for the realization of metamaterials exhibiting original </span><span style="left: 118px; top: 618.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00027);">prop</span><span style="left: 154.6px; top: 618.588px; font-size: 20px; font-family: serif; transform: scaleX(0.982947);">erties such as negative refractive index or artificial anisotropy [</span><span style="left: 696px; top: 618.588px; font-size: 20px; font-family: serif; transform: scaleX(1.0006);">2]</span><span style="left: 721.8px; top: 618.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00039);">wit</span><span style="left: 747.4px; top: 618.588px; font-size: 20px; font-family: serif; transform: scaleX(0.992953);">h extraordinary </span><span style="left: 118px; top: 642.588px; font-size: 20px; font-family: serif; transform: scaleX(0.998477);">birefringence (</span><span style="left: 236.2px; top: 645.41px; font-size: 20px; font-family: sans-serif;">â</span><span style="left: 247.4px; top: 642.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00008);">n= 0.75 </span><span style="left: 313.6px; top: 642.588px; font-size: 20px; font-family: serif;">[</span><span style="left: 320.6px; top: 642.588px; font-size: 20px; font-family: serif;">3</span><span style="left: 330.6px; top: 642.588px; font-size: 20px; font-family: serif; transform: scaleX(1.00109);">])</span&g
Numerical study of an efficient light focusing nano-coupler based on C-shaped waveguides
International audienceWe present an FDTD simulation study of a new design of light focusing nano-coupler consisting of a tapered succession of C-shaped silver waveguides. Its operation is based on the use of the fundamental guided mode <span class="mathjax-tex"><span class="MathJax_Preview" style=""></span><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" style="position: relative;" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi><msub><mi>E</mi><mrow class="MJX-TeXAtom-ORD"><mn>10</mn></mrow></msub></math>" role="presentation"><nobr aria-hidden="true"><span class="math" id="MathJax-Span-1" style="width: 2.455em; display: inline-block;"><span style="display: inline-block; position: relative; width: 2.202em; height: 0px; font-size: 111%;"><span style="position: absolute; clip: rect(1.422em, 1002.2em, 2.568em, -1000em); top: -2.252em; left: 0em;"><span class="mrow" id="MathJax-Span-2"><span class="mi" id="MathJax-Span-3" style="font-family: MathJax_Math; font-style: italic;">T<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.12em;"></span></span><span class="msubsup" id="MathJax-Span-4"><span style="display: inline-block; position: relative; width: 1.52em; height: 0px;"><span style="position: absolute; clip: rect(3.174em, 1000.76em, 4.154em, -1000em); top: -4.004em; left: 0em;"><span class="mi" id="MathJax-Span-5" style="font-family: MathJax_Math; font-style: italic;">E<span style="display: inline-block; overflow: hidden; height: 1px; width: 0.026em;"></span></span><span style="display: inline-block; width: 0px; height: 4.004em;"></span></span><span style="position: absolute; top: -3.854em; left: 0.738em;"><span class="texatom" id="MathJax-Span-6"><span class="mrow" id="MathJax-Span-7"><span class="mn" id="MathJax-Span-8" style="font-size: 70.7%; font-family: MathJax_Main;">10</span></span></span><span style="display: inline-block; width: 0px; height: 4.004em;"></span></span></span></span></span><span style="display: inline-block; width: 0px; height: 2.252em;"></span></span></span><span style="display: inline-block; overflow: hidden; vertical-align: -0.239em; border-left: 0px solid; width: 0px; height: 1.05em;"></span></span></nobr></span></span><span class="mathjax-tex"></span>. Thanks to the optimization of the structural design parameters, we have demonstrated numerically that this compact coupler enables a sub-wavelength light focusing with a transmission coefficient of 65% and a coupling efficiency of 77% that have higher values than the optimized designs reported in the literature. We also show that our structure is an efficient functional coupler at multiple wavelengths when used in a periodic grating as well as an isolated device. This could pave the way for the development of a new generation of metamaterials for guidance and detection applications
Half-wave plate based on a birefringent metamaterial in the visible range
International audienceIn this paper, a half-wave plate (HWP) based on a birefringent metamaterial is numerically designed to operate in the visible range. The proposed structure consists of an array of double-pattern perpendicular rectangular apertures (RAA) engraved into opaque silver film deposited on a glass substrate. One of the apertures is glass filled. The operating principle is based on the excitation and the propagation of one guided mode inside each aperture but with different effective indices. After transmission, a phase difference is obtained between the two transverse components, which value depends mainly on the metal thickness. We have investigated the simplest configuration using a homemade code based on the finite difference time domain method to design a half-wave plate with optimized efficiency resulting in transmission coefficient of more than 60% together with a birefringence of 2.1 at an operation wavelength of 737nm.<span class="math"><span class="MathJax_Preview" style=""></span><span style="font-size: 90%; display: inline-block; position: relative;" class="MathJax_SVG" id="MathJax-Element-1-Frame" tabindex="0" data-mathml="<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow is="true"><mn is="true">737</mn><mspace class="nbsp" width="1em" is="true" /><mi is="true" mathvariant="normal">nm</mi></mrow></math>" role="presentation"><svg xmlns:xlink="http://www.w3.org/1999/xlink" width="9.425ex" height="1.972ex" style="vertical-align: -0.25ex;" viewBox="0 -741.6 4058.2 849.3" aria-hidden="true"><g stroke="currentColor" fill="currentColor" stroke-width="0" transform="matrix(1 0 0 -1 0 0)"><g><g><use xlink:href="https://www.sciencedirect.com/science/article/abs/pii/S0030401821000547?via%3Dihub#MJMAIN-33" x="500" y="0"></use><use xlink:href="https://www.sciencedirect.com/science/article/abs/pii/S0030401821000547?via%3Dihub#MJMAIN-37" x="1001" y="0"></use></g></g></g></svg></span></span>This kind of anisotropic metasurfaces promises a wide range of applications in integrated photonics
Implementation of the FDTD method in cylindrical coordinates for dispersive materials: Modal study of C-shaped nano-waveguides
International audienceThe objective of this work is to develop a code based on the finite difference time domain method in cylindrical coordinates (CC-FDTD) that integrates the Drude Critical Points model (DCP) and to apply it in the study of a metallic C-shaped waveguide (CSWG). The integrated dispersion model allows an accurate description of noble metals in the optical range and working in cylindrical coordinates is necessary to bypass the staircase effect induced by a Cartesian mesh especially in the case of curved geometrical forms. The CC-FDTD code developed as a part of this work is more general than the Body-Of-Revolution-FDTD algorithm that can only handle structures exhibiting a complete cylindrical symmetry. A N-order CC-FDTD code is then derived and used to perform a parametric study of an infinitly-long CSWG for nano-optic applications. Propagation losses and dispersion diagrams are given for different geometrical parameters
Conception par FDTD dâune lame demi onde dans la gamme optique Ă base de mĂ©tamatĂ©riau birĂ©frignent
International audience<span style="left: 118.18px; top: 407.223px; font-size: 15px; font-family: serif; transform: scaleX(1.00097);">Dans ce travail, nous avons Ă©tudiĂ© un rĂ©seau pĂ©riodique sublongueur d'onde composĂ© de</span><span style="left: 647.98px; top: 407.223px; font-size: 15px; font-family: serif; transform: scaleX(0.999398);"> deux ouvertures rectangulaire et </span><span style="left: 118.18px; top: 424.623px; font-size: 15px; font-family: serif; transform: scaleX(0.997207);">coaxiale </span><span style="left: 171.775px; top: 424.623px; font-size: 15px; font-family: serif; transform: scaleX(1.00172);">gravĂ©es dans un film en argent</span><span style="left: 355.57px; top: 424.623px; font-size: 15px; font-family: serif; transform: scaleX(1.004);"> dans le but de</span><span style="left: 442.36px; top: 424.623px; font-size: 15px; font-family: serif; transform: scaleX(0.996076);"> concevoir des </span><span style="left: 532.555px; top: 424.623px; font-size: 15px; font-family: serif; transform: scaleX(0.98822);">lames</span><span style="left: 567.355px; top: 424.623px; font-size: 15px; font-family: serif; transform: scaleX(1.00095);"> birĂ©fringentes dans le domaine optique. Cette </span><span style="left: 118.15px; top: 441.828px; font-size: 15px; font-family: serif; transform: scaleX(1.00034);">Ă©tude a Ă©tĂ© rĂ©alis</span><span style="left: 218.545px; top: 441.828px; font-size: 15px; font-family: serif; transform: scaleX(0.994135);">Ă©e </span><span style="left: 235.54px; top: 441.828px; font-size: 15px; font-family: serif; transform: scaleX(1.00043);">Ă l'aide d'un code maison FDTD oĂč la dispersion du mĂ©tal est dĂ©crite par le modĂšl</span><span style="left: 727.135px; top: 441.828px; font-size: 15px; font-family: serif; transform: scaleX(1.006);">e de Drude</span><span style="left: 793.135px; top: 441.828px; font-size: 15px; font-family: serif; transform: scaleX(0.997938);"> Ă deux </span><span style="left: 118.135px; top: 459.033px; font-size: 15px; font-family: serif; transform: scaleX(1.00025);">points critiques (DCP). La particularitĂ© du mode TEM de la cavitĂ© coaxiale, qui peut ĂȘtre excitĂ© Ă des longueurs d'onde Ă©l</span><span style="left: 846.73px; top: 459.033px; font-size: 15px; font-family: serif; transform: scaleX(0.990129);">e-</span><span style="left: 118.135px; top: 476.238px; font-size: 15px; font-family: serif; transform: scaleX(1.00027);">vĂ©es, a permis de concevoir une plaque demi</span><span style="left: 387.13px; top: 476.238px; font-size: 15px; font-family: serif; transform: scaleX(1.00686);">-onde </span><span style="left: 425.125px; top: 476.238px; font-size: 15px; font-family: serif; transform: scaleX(1.0009);">dans le domaine optique</span&g
Optimization of the transmission of the AAA structure through TEM mode
International audience<span style="left: 252.601px; top: 327.209px; font-size: 16.6px; font-family: serif; transform: scaleX(0.971116);">The present work is devoted to the transmission of the real metal Annular Aperture </span><span style="left: 178.2px; top: 346.415px; font-size: 16.6px; font-family: serif; transform: scaleX(0.969667);">Array (AAA) through the TEM mode. The used FDTD code that we previously developed, can </span><span style="left: 178.2px; top: 365.622px; font-size: 16.6px; font-family: serif; transform: scaleX(0.999485);">simulates structures excited by oblique incidence. We have shown that the inclination of the </span><span style="left: 178.216px; top: 384.828px; font-size: 16.6px; font-family: serif; transform: scaleX(1.01644);">apertures of these structures allowed exciting the TEM mode in normal incidence. This inclination </span><span style="left: 178.233px; top: 404.034px; font-size: 16.6px; font-family: serif; transform: scaleX(1.03637);">also induced the displacement of the TEM peak towards the red with greater intensity. The AAA </span><span style="left: 178.233px; top: 423.041px; font-size: 16.6px; font-family: serif; transform: scaleX(0.984123);">classical structure, with an extension of the coax</span><span style="left: 515.014px; top: 423.041px; font-size: 16.6px; font-family: serif; transform: scaleX(0.959493);"> core and excited at oblique incidence, allowed</span><span style="left: 178.249px; top: 442.247px; font-size: 16.6px; font-family: serif; transform: scaleX(0.946629);">redshift of the TEM peak. This shift is a function of the imposed elongation on both sides of the </span><span style="left: 178.249px; top: 461.453px; font-size: 16.6px; font-family: serif; transform: scaleX(1.00546);">coax core</span&g
Design of a half-wave plate based on metamaterials in the optical range
International audience<span style="left: 239.827px; top: 377.189px; font-size: 18.4px; font-family: serif; transform: scaleX(0.970794);"> We present in this contribution the design of metamaterial-based half-wave </span><span style="left: 165.234px; top: 398.184px; font-size: 18.4px; font-family: serif; transform: scaleX(0.940475);">plate operating in the optical range. This na</span><span style="left: 496.206px; top: 398.184px; font-size: 18.4px; font-family: serif; transform: scaleX(0.948033);">nostructure consists on a bi-periodic grating </span><span style="left: 165.234px; top: 419.38px; font-size: 18.4px; font-family: serif; transform: scaleX(0.944773);">combining one annular aperture with one C-shaped aperture both engraved into a metal </span><span style="left: 165.234px; top: 440.428px; font-size: 18.4px; font-family: serif; transform: scaleX(1.01542);">layer. The artificial anisotropy is induced by the geometry of the structure that presents a </span><span style="left: 165.234px; top: 461.627px; font-size: 18.4px; font-family: serif; transform: scaleX(1.00898);">rupture of symmetry, allowing the control of </span><span style="left: 500.051px; top: 461.627px; font-size: 18.4px; font-family: serif; transform: scaleX(1.00415);">the polarization state of the light transmitted </span><span style="left: 165.234px; top: 482.619px; font-size: 18.4px; font-family: serif; transform: scaleX(1.00903);">through these plates. The FDTD numerical results show high performances: transmission </span><span style="left: 165.234px; top: 503.816px; font-size: 18.4px; font-family: serif; transform: scaleX(0.997116);">of around 60% together with an artificial birefringence </span><span style="left: 571.524px; top: 503.814px; font-size: 18.4px; font-family: sans-serif; transform: scaleX(0.957006);">of În=</span><span style="left: 622.915px; top: 503.816px; font-size: 18.4px; font-family: serif; transform: scaleX(0.990311);"> 2.6. </span&g