20 research outputs found

    On relations between one-dimensional quantum and two-dimensional classical spin systems

    Get PDF
    We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems with critical properties equivalent to those of the class of one-dimensional quantum systems discussed in a companion paper (J. Hutchinson, J. P. Keating, and F. Mezzadri, arXiv:1503.05732). In particular, we use three approaches: the Trotter-Suzuki mapping; the method of coherent states; and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in our previous article for the classical systems identified.Comment: 36 page

    Comb entanglement in quantum spin chains

    Full text link
    Bipartite entanglement in the ground state of a chain of NN quantum spins can be quantified either by computing pairwise concurrence or by dividing the chain into two complementary subsystems. In the latter case the smaller subsystem is usually a single spin or a block of adjacent spins and the entanglement differentiates between critical and non-critical regimes. Here we extend this approach by considering a more general setting: our smaller subsystem SAS_A consists of a {\it comb} of LL spins, spaced pp sites apart. Our results are thus not restricted to a simple `area law', but contain non-local information, parameterized by the spacing pp. For the XX model we calculate the von-Neumann entropy analytically when NN\to \infty and investigate its dependence on LL and pp. We find that an external magnetic field induces an unexpected length scale for entanglement in this case.Comment: 6 pages, 4 figure

    A new correlator in quantum spin chains

    Full text link
    We propose a new correlator in one-dimensional quantum spin chains, the ss-Emptiness Formation Probability (ss-EFP). This is a natural generalization of the Emptiness Formation Probability (EFP), which is the probability that the first nn spins of the chain are all aligned downwards. In the ss-EFP we let the spins in question be separated by ss sites. The usual EFP corresponds to the special case when s=1s=1, and taking s>1s>1 allows us to quantify non-local correlations. We express the ss-EFP for the anisotropic XY model in a transverse magnetic field, a system with both critical and non-critical regimes, in terms of a Toeplitz determinant. For the isotropic XY model we find that the magnetic field induces an interesting length scale.Comment: 6 pages, 1 figur

    Nodal domain distributions for quantum maps

    Full text link
    The statistics of the nodal lines and nodal domains of the eigenfunctions of quantum billiards have recently been observed to be fingerprints of the chaoticity of the underlying classical motion by Blum et al. (Phys. Rev. Lett., Vol. 88 (2002), 114101) and by Bogomolny and Schmit (Phys. Rev. Lett., Vol. 88 (2002), 114102). These statistics were shown to be computable from the random wave model of the eigenfunctions. We here study the analogous problem for chaotic maps whose phase space is the two-torus. We show that the distributions of the numbers of nodal points and nodal domains of the eigenvectors of the corresponding quantum maps can be computed straightforwardly and exactly using random matrix theory. We compare the predictions with the results of numerical computations involving quantum perturbed cat maps.Comment: 7 pages, 2 figures. Second version: minor correction

    Entanglement in Quantum Spin Chains, Symmetry Classes of Random Matrices, and Conformal Field Theory

    Full text link
    We compute the entropy of entanglement between the first NN spins and the rest of the system in the ground states of a general class of quantum spin-chains. We show that under certain conditions the entropy can be expressed in terms of averages over ensembles of random matrices. These averages can be evaluated, allowing us to prove that at critical points the entropy grows like κlog2N+κ~\kappa\log_2 N + {\tilde \kappa} as NN\to\infty, where κ\kappa and κ~{\tilde \kappa} are determined explicitly. In an important class of systems, κ\kappa is equal to one-third of the central charge of an associated Virasoro algebra. Our expression for κ\kappa therefore provides an explicit formula for the central charge.Comment: 4 page

    Rate of convergence of linear functions on the unitary group

    Full text link
    We study the rate of convergence to a normal random variable of the real and imaginary parts of Tr(AU), where U is an N x N random unitary matrix and A is a deterministic complex matrix. We show that the rate of convergence is O(N^{-2 + b}), with 0 <= b < 1, depending only on the asymptotic behaviour of the singular values of A; for example, if the singular values are non-degenerate, different from zero and O(1) as N -> infinity, then b=0. The proof uses a Berry-Esse'en inequality for linear combinations of eigenvalues of random unitary, matrices, and so appropriate for strongly dependent random variables.Comment: 34 pages, 1 figure; corrected typos, added remark 3.3, added 3 reference

    On the multiplicativity of quantum cat maps

    Full text link
    The quantum mechanical propagators of the linear automorphisms of the two-torus (cat maps) determine a projective unitary representation of the theta group, known as Weil's representation. We prove that there exists an appropriate choice of phases in the propagators that defines a proper representation of the theta group. We also give explicit formulae for the propagators in this representation.Comment: Revised version: proof of the main theorem simplified. 21 page

    Quantum cat maps with spin 1/2

    Full text link
    We derive a semiclassical trace formula for quantized chaotic transformations of the torus coupled to a two-spinor precessing in a magnetic field. The trace formula is applied to semiclassical correlation densities of the quantum map, which, according to the conjecture of Bohigas, Giannoni and Schmit, are expected to converge to those of the circular symplectic ensemble (CSE) of random matrices. In particular, we show that the diagonal approximation of the spectral form factor for small arguments agrees with the CSE prediction. The results are confirmed by numerical investigations.Comment: 26 pages, 3 figure

    Entanglement entropy in quantum spin chains with finite range interaction

    Full text link
    We study the entropy of entanglement of the ground state in a wide family of one-dimensional quantum spin chains whose interaction is of finite range and translation invariant. Such systems can be thought of as generalizations of the XY model. The chain is divided in two parts: one containing the first consecutive L spins; the second the remaining ones. In this setting the entropy of entanglement is the von Neumann entropy of either part. At the core of our computation is the explicit evaluation of the leading order term as L tends to infinity of the determinant of a block-Toeplitz matrix whose symbol belongs to a general class of 2 x 2 matrix functions. The asymptotics of such determinant is computed in terms of multi-dimensional theta-functions associated to a hyperelliptic curve of genus g >= 1, which enter into the solution of a Riemann-Hilbert problem. Phase transitions for thes systems are characterized by the branch points of the hyperelliptic curve approaching the unit circle. In these circumstances the entropy diverges logarithmically. We also recover, as particular cases, the formulae for the entropy discovered by Jin and Korepin (2004) for the XX model and Its, Jin and Korepin (2005,2006) for the XY model.Comment: 75 pages, 10 figures. Revised version with minor correction

    On the spacing distribution of the Riemann zeros: corrections to the asymptotic result

    Full text link
    It has been conjectured that the statistical properties of zeros of the Riemann zeta function near z = 1/2 + \ui E tend, as EE \to \infty, to the distribution of eigenvalues of large random matrices from the Unitary Ensemble. At finite EE numerical results show that the nearest-neighbour spacing distribution presents deviations with respect to the conjectured asymptotic form. We give here arguments indicating that to leading order these deviations are the same as those of unitary random matrices of finite dimension Neff=log(E/2π)/12ΛN_{\rm eff}=\log(E/2\pi)/\sqrt{12 \Lambda}, where Λ=1.57314...\Lambda=1.57314 ... is a well defined constant.Comment: 9 pages, 3 figure
    corecore