367 research outputs found

    Reflex changes associated with anticipatory postural adjustments preceding voluntary arm movements in standing humans

    Get PDF
    Dynamic changes in human stability, such as those induced by upper body movements, are preceded by anticipatory postural adjustments (APAs) in the rest of the body. We measured the excitability of the stretch reflex of the triceps-surae muscle group during APAs associated with unilateral right arm raises in standing humans. Our results demonstrate that reflex excitability and underlying muscle activity are linked during the APA period, but that they differ in their relative timing. This supports the idea that reflexes are controlled independently of muscle activation

    Quantifying Florida Bay Habitat Suitability for Fishes and Invertebrates Under Climate Change Scenarios

    Get PDF
    The Florida Bay ecosystem supports a number of economically important ecosystem services, including several recreational fisheries, which may be affected by changing salinity and temperature due toclimate change. In this paper, we use a combination of physical models and habitat suitability index models to quantify the effects of potential climate change scenarios on a variety of juvenile fish and lobster species in Florida Bay. The climate scenarios include alterations in sea level, evaporation and precipitation rates, coastal runoff, and water temperature. We find that the changes in habitat suitability vary in both magnitude and direction across the scenarios and species, but are on average small. Only one of the seven species we investigate (Lagodon rhomboides, i.e., pinfish) sees a sizable decrease in optimal habitat under any of the scenarios. This suggests that the estuarine fauna of Florida Bay may not be as vulnerable to climate change as other components of the ecosystem, such as those in the marine/terrestrial ecotone. However, these models are relatively simplistic, looking only at single species effects of physical drivers without considering the many interspecific interactions that may play a key role in the adjustment of the ecosystem as a whole. More complex models that capture the mechanistic links between physics and biology, as well as the complex dynamics of the estuarine food web, may be necessary to further understand the potential effects of climate change on the Florida Bay ecosystem

    Linear Parameter Varying Identification of Dynamic Joint Stiffness during Time-Varying Voluntary Contractions

    Get PDF
    Dynamic joint stiffness is a dynamic, nonlinear relationship between the position of a joint and the torque acting about it, which can be used to describe the biomechanics of the joint and associated limb(s). This paper models and quantifies changes in ankle dynamic stiffness and its individual elements, intrinsic and reflex stiffness, in healthy human subjects during isometric, time-varying (TV) contractions of the ankle plantarflexor muscles. A subspace, linear parameter varying, parallel-cascade (LPV-PC) algorithm was used to identify the model from measured input position perturbations and output torque data using voluntary torque as the LPV scheduling variable (SV). Monte-Carlo simulations demonstrated that the algorithm is accurate, precise, and robust to colored measurement noise. The algorithm was then used to examine stiffness changes associated with TV isometric contractions. The SV was estimated from the Soleus EMG using a Hammerstein model of EMG-torque dynamics identified from unperturbed trials. The LPV-PC algorithm identified (i) a non-parametric LPV impulse response function (LPV IRF) for intrinsic stiffness and (ii) a LPV-Hammerstein model for reflex stiffness consisting of a LPV static nonlinearity followed by a time-invariant state-space model of reflex dynamics. The results demonstrated that: (a) intrinsic stiffness, in particular ankle elasticity, increased significantly and monotonically with activation level; (b) the gain of the reflex pathway increased from rest to around 10–20% of subject's MVC and then declined; and (c) the reflex dynamics were second order. These findings suggest that in healthy human ankle, reflex stiffness contributes most at low muscle contraction levels, whereas, intrinsic contributions monotonically increase with activation level

    Methods for peptide identification by spectral comparison

    Get PDF
    BACKGROUND: Tandem mass spectrometry followed by database search is currently the predominant technology for peptide sequencing in shotgun proteomics experiments. Most methods compare experimentally observed spectra to the theoretical spectra predicted from the sequences in protein databases. There is a growing interest, however, in comparing unknown experimental spectra to a library of previously identified spectra. This approach has the advantage of taking into account instrument-dependent factors and peptide-specific differences in fragmentation probabilities. It is also computationally more efficient for high-throughput proteomics studies. RESULTS: This paper investigates computational issues related to this spectral comparison approach. Different methods have been empirically evaluated over several large sets of spectra. First, we illustrate that the peak intensities follow a Poisson distribution. This implies that applying a square root transform will optimally stabilize the peak intensity variance. Our results show that the square root did indeed outperform other transforms, resulting in improved accuracy of spectral matching. Second, different measures of spectral similarity were compared, and the results illustrated that the correlation coefficient was most robust. Finally, we examine how to assemble multiple spectra associated with the same peptide to generate a synthetic reference spectrum. Ensemble averaging is shown to provide the best combination of accuracy and efficiency. CONCLUSION: Our results demonstrate that when combined, these methods can boost the sensitivity and specificity of spectral comparison. Therefore they are capable of enhancing and complementing existing tools for consistent and accurate peptide identification
    • …
    corecore