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Dynamic joint stiffness is a dynamic, nonlinear relationship between the position of a

joint and the torque acting about it, which can be used to describe the biomechanics of

the joint and associated limb(s). This paper models and quantifies changes in ankle

dynamic stiffness and its individual elements, intrinsic and reflex stiffness, in healthy

human subjects during isometric, time-varying (TV) contractions of the ankle plantarflexor

muscles. A subspace, linear parameter varying, parallel-cascade (LPV-PC) algorithm

was used to identify the model from measured input position perturbations and output

torque data using voluntary torque as the LPV scheduling variable (SV). Monte-Carlo

simulations demonstrated that the algorithm is accurate, precise, and robust to colored

measurement noise. The algorithm was then used to examine stiffness changes

associated with TV isometric contractions. The SV was estimated from the Soleus EMG

using a Hammerstein model of EMG-torque dynamics identified from unperturbed trials.

The LPV-PC algorithm identified (i) a non-parametric LPV impulse response function

(LPV IRF) for intrinsic stiffness and (ii) a LPV-Hammerstein model for reflex stiffness

consisting of a LPV static nonlinearity followed by a time-invariant state-space model of

reflex dynamics. The results demonstrated that: (a) intrinsic stiffness, in particular ankle

elasticity, increased significantly and monotonically with activation level; (b) the gain of

the reflex pathway increased from rest to around 10–20% of subject’s MVC and then

declined; and (c) the reflex dynamics were second order. These findings suggest that in

healthy human ankle, reflex stiffness contributes most at low muscle contraction levels,

whereas, intrinsic contributions monotonically increase with activation level.

Keywords: joint stiffness, ankle biomechanics, system identification, time-varying, linear parameter varying

1. INTRODUCTION

Ankle joint biomechanics can be described by the relationship between the joint position and
the torque acting about it, defined as dynamic joint stiffness. It describes the properties of the
human actuator and determines (a) the internal load that the central nervous system (CNS) must
control and (b) the joint behavior in response to external loads or perturbations. Consequently, a
quantitative knowledge of joint stiffness is essential for understanding the normal control of posture
and movement and the nature of motor function disorders such as spasticity, rigidity, hypertonia,
hypotonia, and flaccidity (Amato and Ponziani, 1999; Bar-On et al., 2014). Also, a good model of
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joint stiffness is invaluable for the design and control of ankle
prostheses and orthoses (Palazzolo et al., 2007).

Joint stiffness modeling has been extensively investigated in
the literature (e.g., Kearney et al., 1997; Mirbagheri et al., 2000;
Jalaleddini and Kearney, 2011; Sobhani Tehrani et al., 2014). Two
distinct physiological mechanisms contribute to joint stiffness:
(i) Limb inertia, viscoelasticity of muscle-tendon complex, and
active properties of muscle contraction that together define
intrinsic stiffness; and (ii) Stretch reflex feedback that changes
muscle activation in response to changes inmuscle length leading
to reflex stiffness. At the human ankle, this has been efficiently
modeled with a Parallel-Cascade (PC) structure having separate
pathways for intrinsic and reflex stiffness (Kearney et al., 1997).
This study showed that under quasi-stationary conditions, where
the joint is perturbed around an operating point (OP) defined
by joint position and activation level, the intrinsic stiffness can
be modeled by an impulse response function (IRF) and the
nonlinear reflex stiffness can be modeled by a Hammerstein
system consisting of a static nonlinearity followed by a linear
dynamics.

However, numerous quasi-stationary studies, using system
identification techniques, demonstrated that both intrinsic and
reflex stiffness parameters change drastically and systematically
with ankle position and activation level (Weiss et al., 1986;
Sinkjaer et al., 1988; Carter et al., 1990; Mirbagheri et al., 2000;
Van der Helm et al., 2002; Bar-On et al., 2014; Jalaleddini
et al., 2016). Thus, in many functional tasks, like normal gait,
where joint position and neural activation continuously change
to control movement and counteract external perturbations, joint
stiffness will exhibit time-varying (TV) behavior. Furthermore,
there is evidence that this TV behavior cannot be predicted
simply by interpolating local TI models identified under quasi-
stationary conditions (Kirsch and Kearney, 1997). Therefore,
more advanced methodologies are required to identify and
characterize joint stiffness during movement or functional tasks.

To this end, a number of approaches have been proposed
and used over the years. These include intramuscular mechanism
modeling using optimization that minimizes a predefined cost
function (Sartori et al., 2015), system identification techniques,
or a combination of both (de Vlugt et al., 2010). Methods for
identification of TV systems can be divided into four main
categories: (i) short segment, (ii) ensemble-based, (iii) time-
varying, and (iv) linear parameter varying (LPV).

Short segment methods (Ludvig and Perreault, 2012; Rouse
et al., 2014; Jalaleddini et al., 2017) divide non-stationary data
into a number of segments with quasi-stationary behavior
and identify a time-invariant model for each segment. The
segmentation is not always trivial and often requires the TV
behavior to be very slow. Ensemble-based methods (MacNeil
et al., 1992; Kirsch et al., 1993; Ludvig et al., 2011; Lee and
Hogan, 2015) are effective but require many trials with identical
TV behavior, which is hard to achieve in many experimental
conditions. Moreover, repeating the same task many times may
result in fatigue and affect the reliability of estimates. Time-
varying identification techniques (Sanyal et al., 2005; Ikharia
and Westwick, 2006, 2007; Guarin and Kearney, 2015) use
temporal expansion to estimate how the system parameters

change continuously with time using data from a single trial; thus
simplifying data requirements significantly. However, selecting
proper basis functions for temporal expansion is often difficult
and the number of model parameters increases significantly if
the time-dependent changes are fast; thus reducing the quality of
the estimates. Moreover, none of the models identified by these
methods can predict the system response to novel trajectories.

LPVmodels have a structure resembling that of linear systems
whose parameters change as functions of one or more time-
dependent signal called scheduling variables (SV). As such,
the LPV structure is an excellent candidate for modeling joint
stiffness during functional tasks where the TV behavior is mostly
due to dependency on neuromuscular variables that vary with
time. Also, by relating TV behavior to SVs rather than time, LPV
models model the nonlinear mechanisms that generate the TV
behavior and thus have the ability to predict the response to novel
trajectories. Finally, control theory is well developed for LPV
systems (Mohammadpour and Scherer, 2012), which makes LPV
models suitable for prostheses and orthoses control.

Despite the significant advantages of LPV models, methods
for LPV identification of nonlinear physiological systems have
not been studied much. Examples include the LPV modeling
of glucose-insulin dynamics in type I diabetes (Cerone et al.,
2012) and of the hemodynamic response to profiled hemodialysis
(Javed et al., 2010). Our lab has pioneered the use of LPV
methods for the identification of joint stiffness. Specifically,
Sobhani Tehrani et al. (2013a) identified a LPV mass-spring-
damper (LPV IBK) model of intrinsic ankle joint stiffness for
imposed movements at rest. Soon after, Van Eesbeek et al.
(2013) used a LPV subspace method to identify time-variant
intrinsic impedance of the human wrist joint. Subsequently,
Sobhani Tehrani et al. (2014) developed subspace LPV parallel-
cascade (LPV-PC) method for the identification of both intrinsic
and reflex stiffness during large passive ankle movements.
However, these studies were conducted under passive (i.e., at
rest) conditions and quantified position dependent changes in
stiffness. The study of joint stiffness changes during large time-
varying muscle contractions is challenging since neither the
muscle activation level nor the voluntary torque are directly
measurable as scheduling variable.

In this work, we used the subspace LPV-PC
algorithm (Sobhani Tehrani et al., 2014) to characterize
changes in both intrinsic and reflex stiffness during isometric,
time-varying contractions of the ankle plantarflexors of healthy
human subjects. This algorithm, models the intrinsic pathway
as a non-parametric LPV impulse response function (LPV IRF)
and reflex stiffness as a LPV-Hammerstein cascade of a LPV
static nonlinearity and a time invariant (TIV) linear dynamics.
The reflex linear dynamic was assumed TIV, similar to previous
works (Sinkjaer et al., 1996, 1988; Ludvig et al., 2011). The
scheduling variable, the joint voluntary torque, was estimated
from EMG signals using a time-invariant Hammerstein model
of EMG-Torque dynamics, which was previously identified
using an error-in-variable subspace algorithm. In addition to the
experimental examination of the subspace LPV-PC identification
method, we also performed Monte-Carlo simulations to
demonstrate its accuracy and precision.
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2. METHODS

2.1. Problem Formulation
Figure 1 shows a block diagram of the subspace LPV-PC model
with joint angle as input (θ), total torque as output (TQtot), and
voluntary torque as scheduling variable (µ). The total torque is
the sum of intrinsic (TQI), reflex (TQR), and voluntary torques
(TQV ), and the colored measurement noise (n). This can be
written as:

TQtot(k) = TQI(k)+ TQR(k)+ TQV (k)+ n(k) (1)

and the stiffness torque is:

TQs(k) = TQI(k)+ TQR(k) (2)

where,

TQs = [TQs(0) . . .TQs(N − 1)]T

TQI = [TQI(0) . . .TQI(N − 1)]T

TQR = [TQR(0) . . .TQR(N − 1)]T

(3)

E = [n(0) . . . n(N − 1)]T (4)

and N represents the total number of samples. The intrinsic
stiffness is represented by a LPV IRF model:

TQI(k) =

l= L
∑

l=−L

hl(µ(k))θ(k − l) (5)

where hl are the IRF weights that are functions of SV (µ(k))
represented by a basis expansion on the SV:

hl ,

ni∑

j= 0

hljgj(µ(k)) (6)

where hij is the (i, j)-th coefficient for the i-th lag of IRF, gj
represents the j-th basis expansion of the SV and ni is the
expansion order. Now, rewrite this equation in matrix form to

obtain a data equation for the intrinsic pathway; the unknown
intrinsic stiffness parameters are:

βI = [H−L . . .Hl . . .H+L]
T (7)

where Hl contains the LPV IRF weights for lag l,

Hl =
[

hl0 . . . hlni
]T

(8)

The basis expansion of the SV can be represented in vector form:

Gi(k) =
[

g0(µ(k)) . . . gni (µ(k))
]T

(9)

and the lagged position inputs with the vector:

2(k) =
[

θ(k+ l) . . . θ(k) . . . θ(k− l)
]T

(10)

Then, the input to the intrinsic pathway is constructed by the
Kronecker product of Equations (9, 10):

UI(k) = 2(k)⊗ Gi(k) (11)

Now, rewriting Equation (5) in vector form, the data equation for
the intrinsic pathway is:

TQI = 9IβI (12)

with the regressor:

9I =
[

UI(L) . . .UI(N − 1− L)
]T

(13)

The reflex stiffness is modeled by a differentiator, a delay, and
a Hammerstein system comprising a LPV static nonlinearity
followed by a time-invariant linear state-space model. The input
to the Hammerstein system is the delayed joint velocity (due to
reflex delay) denoted by dvel in the equations. The output of

FIGURE 1 | Subspace LPV Parallel-Cascade (LPV-PC) model of joint dynamic stiffness.
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the static nonlinearity is approximated by an orthonormal basis
function expansion of the Hammerstein system input, dvel:

z(k) = f (dvel(k),µ(k)) ≃

np
∑

i= 0

ωi(µ(k))gi(dvel(k))

where,

ωi =

nr∑

j= 0

ωijgj(µ(k))

(14)

and gi(dvel(k)) is the i-th basis expansion of reflex input (dvel),
gj(µ(k)) is the j-th basis expansion of the SV, and ωij is the
coefficient of their products; np and nr are the expansion orders
of the input (dvel) and the SV, respectively. Thus, using basis
expansions of the input, the static nonlinearity is converted
to np parallel linear functions, where the expansion weights
are dependent on the SV. The vectors of input and SV basis
expansions, for reflex pathway, can be written as:

Gr(k) =
[

g0(µ(k)) . . . gnr (µ(k))
]T

DV(k) =
[

g0(dvel(k)) . . . gnp (dvel(k))
]T

(15)

with unknown parameters:

� = [�0 . . . �np ]
T

�i = [ωi0 . . . ωinr ]
T

(16)

Thus, the input to reflex linear dynamics becomes:

UR(k) = DV(k)⊗ Gr(k) (17)

The linear system is modeled using a discrete-time state-space
representation of orderm:

X(k + 1) = AX(k)+ Bz(k)

TQR(k) = CX(k)+ Dz(k)
(18)

where X(k) is the state vector, z(k) is the input to reflex linear
dynamics, and A, B, C, and D are the state-space matrices and:

B =
[

b1 . . . bm
]T

, D = [d] (19)

Substituting Equation (17) in Equation (18) yields:

X(k+ 1) = ARX(k)+ B�UR(k)

TQR(k) = CRX(k)+ D�UR(k)
(20)

where,

B� = B⊗ � =







b1�
T
0 . . . b1�

T
np

...
. . .

...

bm�T
0 . . . bm�T

np






,

D� = D⊗ � =

[

d�T
0 . . . d�T

np

]

(21)

Combining the data equations for intrinsic and reflex pathways
(Equations 12, 20), the total joint stiffness can be represented with
aMulti-Input-Single-Output (MISO) state-space model:

X(k + 1) = ARX(k)+ BTUT(k)

T̂Qs(k) = CRX(k)+ DTUT(k)+ n(k)
(22)

where,

UT(k) =
[

UR(k) UI(k)
]

(23)

BT =

[
B� 0 . . . 0

︸ ︷︷ ︸

(2L+ 1)nicolumns

]

DT =
[

D� βI

]
(24)

2.2. Subspace LPV-PC Identification
Algorithm
An orthogonal projection algorithm (Sobhani Tehrani et al.,
2014; Jalaleddini et al., 2016) was used to first decompose intrinsic
and reflex torque components and subsequently estimate the
unknown model parameters. The unknown parameters to
estimate are (i) the intrinsic IRF parameters (βI in Equation 7);
(ii) the reflex non-linearity coefficients (� in Equation 16); and
(iii) the reflex linear system matrices A, B, C, and D in Equation
(18). This can be achieved through the following steps:

1. Construct the input signal UT(k) from Equation (23).
2. Use the Past Input-Multivariable Output Error State Space

algorithm (PI-MOESP) (Verhaegen and Dewilde, 1992) with
input and output signals (UT(k) and TQs(k)) to estimate the
order of the system (Equation 22),m.

3. Construct the extended observability matrix using m and the
input and output signals, and use it to estimate the state-space
matrices ÂR and ĈR.

4. Form the data equation, and isolate the intrinsic and reflex
parameters (βI ,βR) in separate terms:

ˆTQs = TQI + TQR + E = 9IβI + 9RβR + E (25)

where,9I and βI are defined in Equations (7, 13), respectively,
and:

9R =






0 UT
R (0)

...
...

∑N−2
τ = 0 U

T
R (τ )⊗ ĈRÂ

N−2−τ
R UT

R (N − 1)






βR =

[

BTd
]T

⊗ �

5. Use orthogonal projection to decompose the total torque into
its intrinsic and reflex components:

T̂QI = (I − 9I
†9R9R

†9I)
†9I

†(I − 9R9R
†)T̂Qs

T̂QR = T̂Qs − 9I β̂I

6. Use the subspace Hammerstein method described
in Sobhani Tehrani et al. (2013b) to estimate the reflex
pathway model using dvel(k) as input and T̂QR(k) as output.
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3. SIMULATION STUDY

3.1. Methods
We evaluated the performance of the subspace LPV-PC
identification algorithm using a simulation study of the LPV-
PC model of human’s ankle stiffness dynamics (Figure 1). All
parameter and nominal values of simulation model were selected
based on experimental results reported in literature (Mirbagheri
et al., 2000; Jalaleddini et al., 2016).

3.1.1. Model
The intrinsic stiffness was simulated as the LPV IBK model:

TQI(k) = Iθ̈(k)+ Bθ̇(k)+ K(µ(k))θ(k) (26)

The inertia (I) and viscosity (B) were set to 0.015 Nm.s2/rad and
1.1 Nm.s/rad. The intrinsic elastic parameter (K) and reflex gain
and threshold were simulated to have a non-linear behavior with
changes in voluntary torque (SV). The linear dynamics of reflex
pathway was assumed TIV. Figure 2 demonstrates the simulated
parameters. Elasticity was modeled as a polynomial of order 3
for SV. The reflex gain (represented as NL slope in Figure 2C)
and threshold (NL threshold, Figure 2D) of reflex Hammerstein
system were modeled as polynomial of order 6 for input and a
polynomial of order 4 for the SV.

The linear dynamic element of the reflex pathway was
assumed to be a second-order low-pass filter with the dynamics:

H(s) =
Gω2

n

s2 + 2sζωn + ω2
n

(27)

where G = 1 is the system gain, ωn = 25 rad/s is the natural
frequency and ζ = 0.9 rad/s is the damping factor. The reflex
delay was assumed to be 40 ms. This system was simulated using
MATLAB Simulink at 1 kHz for 120 s.

3.1.2. Input and Noise
The input signal was a pseudo random arbitrary level distributed
signal (PRALDS) with random switching time uniformly
distributed over [250, 350] ms, and maximum amplitude equal
to 0.05 rad. This input signal was then filtered with a second
order Butterworth low-pass filter with cutoff frequency of 30 Hz
to represent the actuator dynamics.

Output noise was modeled as a white Gaussian signal filtered
with a second order Butterworth low-pass filter with cutoff
frequency equal to 15 Hz. The noise amplitude was adjusted to
produce an average signal-to-noise ratio (SNR) of 10 dB. SNR
was calculated as:

SNR(dB) = 20log10

(
RMSsignal

RMSnoise

)

(28)

Figure 3 shows a 4s segment of the position input and noise free
and noisy output data, and Figure 4 shows the simulated input
(position), scheduling variable (voluntary torque), and torques.

3.1.3. Analysis
To avoid aliasing, all simulation data were filtered with an
eighth-order low-pass filter with cutoff frequency of 45 Hz and
decimated to 100 Hz before analysis. The intrinsic pathway was
identified using a LPV IRF model as described by Equation (5).
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We calculated the equivalent elasticity of the identified model
as the low-frequency (or DC) gain of the LPV IRFs at each SV
snapshot. This gain is the steady state value of the integral of
identified intrinsic LPV IRF at each SV snapshot.

We assessed the quality of fit by calculating the variance
accounted for (VAF):

%VAF =

[

1−

∑N
i= 1 (TQi − T̂Qi)

2

∑N
i= 1 TQ

2
i

]

× 100 (29)

where TQi represents the noise free simulated torque at time
interval i and T̂Q represented the estimated value; N is the
number of samples.

We quantified the quality of identification estimates by
using 200 Monte-Carlo trials, each having a new realization of
input and noise. The bias and random errors for reflex static
nonlinearity estimates were calculated as:

Bias Error = ρ − E(ρ̂)

Random Error = E(ρ̂ − E(ρ̂))2
(30)

where ρ and ρ̂ represent true and estimated parameter
respectively. Note that both Bias Error and Random Error are
also functions of delayed velocity and SV.

3.2. Results
Figure 5 shows the torque prediction profiles for a typical trial.
The subspace LPV-PC identification algorithm used, identified
the simulated model very accurately as confirmed by high
VAFs calculated for each pathway. Figure 6 summarizes the
torque prediction accuracy for each pathway as well as the
stiffness torque, for 200 Monte-Carlo trials identified, in boxplot
representation. The VAFs were always above 98% for the high
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confirmed the accuracy of method in identifying the simulated model.

noise level tested in this simulation study, confirming the
efficiency of method in decomposing the total torque into
intrinsic and reflex contributions.

Figure 7A shows the simulated values of intrinsic pathway
elasticity (K) as a function of SV in blue and the mean of 200
Monte-Carlo identification estimates bracketed by two standard
deviations of the estimates in red. It is evident that mean of
estimates were very close to true value with small variance.

Figures 7B,C show the simulated (blue) and estimated (red)
slope and threshold of the estimated nonlinearity extracted from
3D nonlinearity. These values were obtained by finding the best
half-wave rectifier (HWR) fit to estimated nonlinearity at each SV
using Levenberg-Marquardt method in MATLAB curve fitting
toolbox. The red curve shows the mean of 200 Monte-Carlo
identification estimates bracketed by two standard deviations
of the estimates. The mean of the estimates for slope was
very close to simulated values showing that we can accurately
retrieve the reflex gain. The estimates of thresholds at some
SVs were subject to a maximum of 25% error. There are two
explanations for this: (1) the simulated model was different from
the identified model, i.e., HWR was simulated and Chebyshev
polynomials were used for identification. (2) The distribution
of input (velocity for reflex pathway) affects the estimation of
threshold. The estimates are expected to be more accurate for
an input with rectangular probability distribution. However,
these choices were made intentionally in this work to evaluate
the performance of the algorithm for a practical case, i.e., true
nonlinearity may not be the same as that used for identification
for physiological systems, and the actuator dynamics affects the
input distribution. Nevertheless, the overall estimated threshold
variation trend is very close to the true simulated value. Note that
since torque has little power at thresholds, the bias in threshold
estimate has little effect on torque prediction.

The LPV nonlinear block of reflex pathway is plotted
in Figure 8 in 3D representation; Figure 8A shows the true
simulated nonlinearity whereas the average of 200 estimated
nonlinear block is plotted in Figure 8B of this figure. The
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FIGURE 6 | VAF for torque predictions in 200 Monte-Carlo simulation
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FIGURE 7 | True (blue) and the mean of estimated (red) (A) intrinsic elasticity, (B) reflex LPV-static nonlinearity slope and (C) threshold for 200 Monte-Carlo

simulations, bracketed by 2× standard deviation, SNR = 10dB. Parameters of static nonlinearity were estimated by fitting a half-wave rectifier to nonlinearity at each

SV.
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FIGURE 8 | Reflex static nonlinearity for 200 Monte-Carlo simulation: (A) true system, (B) mean of identification estimates for 200 Monte-Carlo simulations,

and top view of 3D plot of (C) bias error, and (D) random error, SNR = 10 dB.

lower two panels show the bias and random errors for

static nonlinearity estimate for 200 simulation trials from

top view; both errors were small with maximum bias error

occurring around nonlinearity threshold. This is consistent with

our estimation of threshold demonstrated in Figure 7C. The

maximum bias error was around 10 Nm/rad and the maximum
random error was 1 Nm/rad, while the nonlinearity has a

maximum gain of 160 Nm/rad. This confirms the efficiency of the

proposed algorithm for estimating the LPV static non-linearity.

The frequency response of reflex linear dynamic estimate is
demonstrated in Figure 9. The linear system was calculated as a

subspace system; the frequency response representation is used
for better visualization of accuracy at different frequencies. Both
the gain and phase estimates were close to true simulated values.

4. EXPERIMENTAL STUDY

4.1. Methods
The new algorithm was used to characterize the modulation of
joint stiffness with activation level in healthy humans performing
an isometric torque tracking task of the ankle plantarflexors.

4.1.1. Apparatus
Figure 10 shows a schematic of the experimental setup which is
described in details in Morier et al. (1990). Subjects lay supine on
an experimental table with the left foot attached to a hydraulic
actuator using a costume-made fiberglass boot. The neutral
position was defined as a 90 degree angle between the foot and
shank. Dorsiflexing rotations were taken as positive. The mean
ankle angle was set to 0.2 rad.
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4.1.2. Subjects
Five healthy subject (one female and four males) aged 26–
33 with no history of neuromuscular disorders participated.

FIGURE 9 | True (blue) and the mean of estimated (red) reflex linear

dynamics (in frequency response representation) (A) gain and (B) phase,

for 200 Monte-Carlo simulations, bracketed by 2× standard deviation, SNR =

10 dB. The bode plot is presented up to 50Hz where the input has enough

power for identifications.

Subjects gave informed consent to the experimental procedures,
which had been reviewed and approved by McGill University
Research Ethics Board. Table 1 summarizes the subjects’
demographics.

4.1.3. Data Acquisition
EMG signals from tibialis anterior (TA) and triceps surae
(TS) including lateral and medial Gastrocnemius muscles were
recorded separately using differential surface electrodes. EMGs
were amplified and band-pass filtered with a gain of 1,000
and cutoff frequencies 20–2,000Hz. Ankle torque was low-pass
filtered with an eighth-order Bessel filter with cut-off frequency
equal to 0.7 Hz in real time and provided to the subject as visual
feedback signal. Position, torque and EMG signals were filtered

TABLE 1 | Subject characteristics: gender, age, Maximum Voluntary

Contraction (MVC) torque in Plantarflexion (PF), and the normalization

factors.

Age PF Intrinsic elasticity Reflex gain Reflex

Subject Gender (years) MVC normalization normalization delay

(Nm) factor factor (ms)

S1 F 33 26.40 18.24 9.9 45

S2 M 32 55.02 174.06 23.1 45

S3 M 32 43.12 90.94 64 40

S4 M 26 79.25 58.61 95 45

S5 M 33 60.14 126.28 80 40

FIGURE 10 | Schematic of the experimental setup. The subject’s left foot was attached to the actuator pedal by a custom boot. Ankle torque and a target signal

were displayed on an overhead monitor. The subject generated dynamic, isometric contractions by tracking the target signal.
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with an anti-aliasing filter at 486.3 Hz, sampled at 1 kHz, and
recorded.

4.1.4. Trials
Subjects were instructed to modulate their ankle torque by
tracking a visual command signal. The command signal
comprised of a sine-wave with a period of 60 s and peak-to-peak
amplitude equal to 40% of their maximum voluntary contraction
(MVC). Two conditions were examined:

1. Unperturbed trial (UT): a low-amplitude pseudo random
binary sequence (PRBS) signal was added to the command
signal. No position perturbations were applied. The PRBS
perturbation was added to command signal (sine-wave) to
provide the rich, persistently excitatory input needed for
accurate identification of the EMG-Torque dynamics.

2. Perturbed trial (PT): random perturbations of ankle position
were applied by the hydraulic actuator. The perturbation
signal was a PRALDS signal with switching rate of 250–350
ms with amplitude of 0.05 rad.

Data were recorded for 120 s at sampling frequency of 1kHz and
then decimated to 100 Hz for analysis. Data were examined for
evidence of fatigue or co-activation; there was no evidence of
either in any of the trial.

4.1.5. Analysis
Identification was performed in three steps:

1. EMG-Torque Dynamics Estimation:We used a time-invariant
error-in-variable (EIV) subspace Hammerstein identification
algorithm to estimate the dynamic relationship between
rectified voluntary Soleus EMG, and torque from UT data.
This algorithm provides unbiased estimates of EMG-Torque
dynamics in experimental conditions where the feedback
is significant as discussed in Golkar and Kearney (2015).
This method uses past inputs and outputs as instrumental
variables in a manner similar to the subspace Hammerstein
identification approach described by Jalaleddini and Kearney
(2013).

2. Estimate of Voluntary Torque in PT trials: The voluntary
component of the EMG was estimated from the EMG
record by removing spikes associated with reflex activation.
These reflex spikes are generated in response to positive
perturbations (muscle stretch). The spikes were located by
calculating the derivative of the input perturbation signal (i.e.,
perturbation velocity) and finding the times where the velocity
was large enough to generate a reflex EMG response. The reflex
EMG was then replaced by values that linearly interpolated
the EMG values preceding and following the spike onset.
The voluntary EMG was adopted to the EMG-Torque model

identified in step 1 to estimate the voluntary torque (T̂Qv).
3. Joint Stiffness Identification: The subspace LPV-PC

identification algorithm was used to estimate the Parallel-
Cascade system relating ankle position (θ) to the estimated

stiffness torque response (T̂Qs) from PT data. The voluntary
torque estimated in step 2 was used as the scheduling variable

(µ). Stiffness torque (T̂Qs) was estimated by removing the

estimated voluntary torque (T̂Qv) from total measured torque
(TQtot).

4.2. Results
4.2.1. EMG-Torque Dynamics Estimation
Figure 11 shows the joint position, visual command, full-wave
rectified Soleus EMG and measured and predicted voluntary
torque from a typical UT trial. The model estimated between
Soleus EMG and torque, predicted the torque extremely well; the
variance accounted for was 93% for this subject and 92 ± 3%
for all subjects. Figure 11E shows the measured and estimated
transient torques. These were obtained by filtering the torques
with a moving average Butterworth low-pass filter to remove the
slow time-varying torques (sine-wave). The VAF for transient
response was 81% for this subject.

4.2.2. Joint Stiffness
Figure 12 shows the position perturbation, the visual command,
and the resulting torque from a typical PT trial. The voluntary
torque, estimated from the UT EMG-Torque model is shown
in magenta in Figure 12C, superimposed on the total measure
torque in blue. The three lower panels show the intrinsic, reflex,
and stiffness torques estimated using LPV-PC identification
algorithm for the trial segment with largest variation in voluntary
torque (SV). Comparing the stiffness torque and that predicted
using LPV identification algorithm, it is evident that the LPV
method captured the TV behavior of the system well with a VAF
of 82% for stiffness torque and 95% for total torque (stiffness +
voluntary torque). The total VAF was never <90% in any trial.
Figure 13 shows the LPV-PCmodel estimate for a typical subject.
Figure 13A shows the TV behavior of the intrinsic dynamics
and how it varies with voluntary torque. Figure 13B shows that
the static nonlinearity has a strong uni-directional sensitivity to
velocity; the slope varies with voluntary activation increasing
from rest to 5 Nm and then decreased. Figures 13C,D show the
bode diagram of estimated TIV reflex linear dynamics resembling
a second-order low-pass filter system.

Figure 14 shows the variation of estimated parameters with
voluntary torque for the five subjects. The estimates of intrinsic
elasticity and reflex gain (nonlinearity slope) were normalized
to their maximum value for the contraction range studied for
each subject to allow inter-subject comparison. The original
values corresponding to data points in the Figure, can be
calculated by multiplying the x-axis value by subject’s MVC and
y-axis value by their corresponding normalization factor. The
MVC and normalization factors for each subject are given in
Table 1. The intrinsic elasticity (K) (Figure 14A), monotonically
increased with contraction level in all subjects. The reflex gain
(Figure 14B) and threshold (Figure 14C) of the static non-
linearity systematically changed with voluntary contraction. The
reflex gain increased with voluntary torque up to 10–30% MVC
in different subjects and then decreased. The variation in reflex
gain was higher than 50%. The reflex nonlinearity threshold
also varied with voluntary torque and was not always zero as
assumed in most quasi-stationary studies. Given the results of
the simulation study, the estimates of threshold values may be
biased but the overall trends are expected to be informative.
The reflex linear block was estimated to be a second-order
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FIGURE 11 | Typical UT experimental trial from an isometric contraction experiment, Subject S1: (A) position perturbations, (B) visual command signal,

(C) soleus EMG, (D) measured (blue) and predicted (red) ankle torque. The TIV Hammerstein model, estimated between rectified EMG and torque, accurately

predicted the voluntary torque with a VAF equal to 93%, (E) the transient torque prediction after removing the large slow-varying torque from both measured and

predicted torques. The VAF for transient response was 81%.

low-pass filter with delay varying between 40 and 45ms (see
Table 1). Figures 14D,E show the gain and phase of reflex linear
dynamics represented in frequency domain. The bandwidth
of reflex pathway varies between 1.65 and 2.9 Hz in subjects
examined in this work.

5. DISCUSSION

This paper investigated and quantified the effects of voluntary
contractions on ankle joint dynamic stiffness and its intrinsic
and reflex components. Previous work has demonstrated that
voluntary muscle activation causes substantial changes of
stiffness during functional tasks (Ludvig and Perreault, 2014).
Thus, studying this system during large, continuous variations
in voluntary contraction will lead to better understanding of the
control of movement. We used a subspace LPV-PC identification
algorithm to track stiffness changes during large, isometric
voluntary torque contractions. We first validated the method

using a Monte-Carlo simulation study. These demonstrated
that the method yielded estimates that were accurate, precise
(thus reliable) and capable of capturing time-varying stiffness
changes similar to those expected from quasi-stationary results,
efficiently. We then applied the method to experimental data
acquired while healthy human subjects made large, transient
voluntary contractions. Our analysis of these data showed that
the stiffness dynamics varied significantly with the contraction.
We believe that the system identification algorithm used in this
study provides an accurate description of intrinsic and reflex
stiffness dynamics throughout a voluntary contraction and so
can be used to asses the contribution of each pathway to joint
mechanics in functional tasks.

5.1. Simulation Study
We used simulations of a realistic stiffness model to validate the
performance of the subspace LPV-PC identification algorithm
when torque varied sinusoidally. The variation in stiffness
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FIGURE 12 | Typical PT experimental trial from an isometric contraction experiment, Subject S1: (A) position perturbations, (B) visual command signal,

(C) total torque (blue) and estimated voluntary torque, used as SV of LPV-PC method (magenta), (D) identified intrinsic torque, (E) identified reflex torque, and (F)

estimated stiffness torque (TQtot − ˆTQv ) (blue) and identified stiffness torque (red). LPV method captured the TV behavior of the system well with a Stiffness VAF of

82% and total VAF (stiffness + voluntary torque) of 95%.

parameters with torque was obtained by interpolating the results
of quasi-stationary experiments with normal human subjects.
We used colored output noise with its amplitude adjusted
to give an average SNR of 10 dB for each simulation trial.
The true experimental noise is expected to be lower than this
value (Ludvig et al., 2011). Thus, we evaluated the identification
algorithm under condition that is more challenging than that
actually seen experimentally. There are two main differences
between our simulation study and the experimental conditions:
(i) SV estimation: In the simulations we assumed that the
voluntary torque could be measured and completely removed
from total torque. However, in the experiments, the SV must
be estimated from the recoded EMG signal. Any errors in
estimating the SV will result in identification performance
to be lower than that predicted from the simulations. (ii)
Identification model structure: We made two assumptions about
the model structure: (1) Stiffness dynamics at the ankle can be
represented using a PC model structure; this model has been
widely used and shown to be successful in predicting the stiffness
torque for both quasi-stationary and TV conditions (Mirbagheri
et al., 2000; Sobhani Tehrani et al., 2014; Jalaleddini et al.,
2017), (2) The reflex pathway has a delay of 40–45ms; this

is shown to be true in many studies (Stein and Kearney,
1995; Kearney et al., 1997; Mirbagheri et al., 2000). There
were few assumptions about structures of the elements of
the PC model. Thus, for the intrinsic pathway the linear
dynamics were modeled as a nonparametric IRF whose length
was limited to be less than the reflex delay. For the reflex
pathway, the nonlinearity is modeled with an orthonormal
expansion whose order minimize the prediction error; the
linear dynamics were modeled with a parametric model whose
order is determined as part of the identification. The excellent
prediction ability of the resulting model demonstrates that
it accurately reproduces the observed behavior. It is possible
that the true structure is more complex than the PC model
(i.e., involve more pathways or have complex pathways such
as nonlinear-linear-nonlinear cascade). If so, the model is
still useful as an approximation since an arbitrary nonlinear
system can be represented by a parallel cascade of block
structured elements. However, in such a case, there would
no longer be a direct relation between the structure of the
model and that of the underlying physiological system; this
possibility must be taken into account in the interpretation of
the results.
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5.2. Dynamic Stiffness
Our experimental results showed that stiffness increased with
contraction level suggesting that system became more stiff at
high contraction levels. The increase in stiffness may be justified
by increase in the number of cross-bridges occurring at higher
contraction levels. Reflex gain increased going from rest to lowest
active level (occurring between 10 and 20% MVC) and then
started to decrease. The variation in reflex gain can be explained
by recruitment of more muscle fibers at higher contraction
levels and existence of an upper-limit in motoneuron pool
excitation. The changes in the nonlinearity threshold suggest
changes in motoneuron pool excitation threshold with torque
levels. These results indicate that contribution of reflex stiffness
is highest at low contractions and decreases as contraction level
increase, whereas, intrinsic stiffness monotonically increases with
contraction level. Note that we did not attempt to parameterize
the LPV IRFs for the intrinsic pathway as a second-order
system because: (1) intrinsic dynamics may be more complex
than the I,B,K model as demonstrated recently in Sobhani
et al. (2017) (2) the fitting procedure would involve non-
linear minimization that would introduce an additional source
of error.

These findings are essential in understanding the role of
stretch reflexes during a motor task particularly those involving
low contraction levels such as the control of posture and balance.
Other works suggested that intrinsic stiffness is not sufficient to
maintain stable upright posture (Morasso and Sanguineti, 2002;

Moorhouse and Granata, 2007). Our results show that the range
of activation where reflex stiffness is significant, varies among
subjects and the reflex contribution was substantial in all subjects
examined in this study. Comparing our results to those reported
in quasi-stationary condition, the reflex maximum contribution
was found to occur around 10%MVC and above whereas this was
reported to occur at 5%MVC (Mirbagheri et al., 2000). However,
it is not clear whether this is due to the dynamics changes due
to task or simply because of differences between the subjects who
participated in these studies.

In a separate work, we used a similar approach as that used
here to estimate the Hammerstein system of reflex pathway,
and evaluated the variation in position-reflex EMG dynamics
with contraction levels, in isometric condition (Golkar et al.,
2015). It was demonstrated that both gain and threshold of
static nonlinearity changed with contraction levels. The results
presented in this work combined with that study gives us a
comprehensive understanding of how stiffness modulates during
isometric TV contractions in plantarflexors of healthy human
subjects.

Given the limited dataset required for the subspace LPV-
PC identification algorithm used in this study, this can be
used toward exploring the effect of some other factors such as
contraction history, contraction rate, and contraction trajectory
on dynamics of joint stiffness. This can be achieved by repeating
the experiment when: (i) the TV torque-matching task starts after
a constant activation level is maintained for a short period of

Frontiers in Computational Neuroscience | www.frontiersin.org 13 May 2017 | Volume 11 | Article 35

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Golkar et al. Identification of Joint Stiffness during TV Contractions

N
o

rm
a

liz
e

d
 I

n
tr

in
s
ic

 

E
la

s
ti
c
it
y
 (

N
m

/r
a

d
)

0

0.5

1 S1

S2

S3

S4

S5

N
o

rm
a

liz
e

d
 R

e
fl
e

x

N
o

n
lin

e
a
ri
ty

 S
lo

p
e

0

0.5

1

Voluntary Torque(% MVC)

0 20 40

R
e

fl
e

x
 N

o
n

lin
e

a
ri
ty

 

T
h

re
s
h
o

ld
 (

ra
d

/s
)

0

0.5

1

R
e

fl
e

x
 L

in
e

a
r

G
a

in
(d

B
)

-40

-20

0

Frequency(Hz)
10-1 100 101 102

R
e

fl
e

x
 L

in
e

a
r 

P
h

a
s
e

(r
a

d
ia

n
s
)

-π

-π/2

0

A

B

C

D

E

FIGURE 14 | Group results: (A) normalized intrinsic elasticity (K); this was obtained from the identified LPV IRF of intrinsic stiffness by calculating the steady state

value of the integral of identified IRFs, Reflex static nonlinearity: (B) normalized gain and (C) threshold both changed systematically with activation level. Frequency

representation of Reflex Linear Dynamics (D) gain, (E) phase; reflex linear dynamics was a second-order low-pass filter and cutoff frequency between 1.65 and 2.9Hz

for different subjects.

time, (ii) use torque-tracking trajectory with different bandwidths
(e.g., different periods for sine-wave) as command signal, (iii)
use different torque trajectories, e.g.,multi-level, and compare the
estimated models for each case.

5.3. Comparison to Previous Works
The overall trends in our findings agree with the results of
quasi-stationary studies. For example, we found that the intrinsic
elasticity increased with activation level, similar to the results
of Mirbagheri et al. (2000). Also, for reflex gain, We observed
a behavior similar to that reported in Jalaleddini et al. (2016).
Nonetheless, the magnitudes of the changes were different. We
observed 50% increase in stiffness whereas Mirbagheri et al.
(2000) reported this to be around 90% for the same range of
contraction. Our estimates of reflex gain were similar to those
of Mirbagheri et al. (2000), except that we observed a persistence
of reflex contribution for a wider range of contraction levels (up
to 30% for some subjects). Some other quasi-stationary works
reported the maximum reflex contribution to occur around 50%
MVC in dorsiflexors (Sinkjaer et al., 1988; Cathers et al., 2004).
Based on our experience, this level of activation is very likely

to cause fatigue which affects the reliability of results from such
experiments. Also, the nominal values reported for maximum
reflex contribution based on %MVC might vary among different
works due to the differences in measuring the MVCs or the
muscle studied.

Van Eesbeek et al. (2013) also used the LPV identification to
study wrist stiffness in an activation varying task. However, their
method was limited to intrinsic estimates and did not decouple
the effects of reflex contribution on the total torque variations.
Reflex contributions were reported to be minimal in the upper
arm (Bennett et al., 1992) but found to be significant in the
ankle (Kearney et al., 1997), wrist (Sinkjær and Hayashi, 1989),
and knee (Ludvig and Perreault, 2014). Consequently, the results
of Van Eesbeek et al. (2013) cannot be directly compared to
ours. Also, the range of activation is very different in the wrist
compared to the ankle. Nevertheless, they showed that the main
variation in intrinsic parameters at human wrist was in the elastic
parameter, variations in viscosity were small and the inertia was
found invariant. This is consistent with our results.

Other studies have used ensemble-based method to evaluate
the effect of activation level on joint stiffness. Visser (2010)
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studied ankle joint stiffness during a sinusoidal torque matching
task, where a monotonic increase in elastic parameter with
voluntary torque was observed similar to the observation of
this study. The main difference with our results was that Visser
(2010) found two peaks in the reflex gain at the lowest and
highest activation levels. Also, Ludvig and Perreault (2014)
used a similar ensemble-based method to study knee stiffness
during rapid activation and reported similar results for the
elastic parameter. Nonetheless, using ensemble-based methods
for activation-varying experiments have a number of drawbacks.
It requires the exact same time-varying behavior to be repeated
many times while (i) it is extremely difficult to match muscle
activation levels between trials, (ii) the muscle recruitment
strategy might change to avoid fatigue, (iii) antagonist muscle(s)
might be activated in some trials to assist the tracking task, (iv)
occurrence of fatigue is inevitable especially if activation levels
above 30% are used in the study, (v) the desired torque trajectory
needs to be slow enough so that subject can repeat the same task
many times, and (vi) system behavior may change from the first
experiment to the last one considering the large number of trials
required.

The LPV identification algorithm described here, models
the underlying dependency of system parameters on torque
mean and thus should predict the response to novel trajectories
for similar conditions. This predictive ability is a strong asset
for studying physiological systems. The experiments described
here were not designed to demonstrate this ability but are an
important next step. In addition, it is not yet known how
this predictive ability depends on the temporal and amplitude
properties of the SV. This is an important topic for future work.

5.4. Limitations of the study
In this study, we used the subspace LPV-PC algorithm and
identified a nonlinear model of both intrinsic and reflex ankle
stiffness during isometric, time-varying contractions. The model
accurately predicted non-stationary torques recorded from
experiments with five healthy subjects. In the identified subspace
LPV-PCmodel, the time-varying behavior of the joint was related
to background voluntary torque, instead of time, defined as
the scheduling variable. Consequently, it provided insight into
functional relationships underlying biomechanics of the joint.
Also, themodel is expected to predict joint response to novel time
trajectories of isometric muscle contractions. However, this study
has some limitations too, including:

• It assumed that the time-varying behavior of the joint is
a function of an a priori known scheduling variable. This
assumption was valid for the slow isometric contraction
experiments of this study. However, may not hold for other
situations such as muscle fatigue, rapid contractions, or
neuromuscular disorders where the SV is not well known.
Similarly, it will almost certainly not hold in functional tasks

where stiffness parameters depend on multiple variables. For

example, during most movements both torque and position
change; stiffness parameters are known to depend strongly on

both, so it is to be expected that modeling this behavior would
require at least two SVs.

• Reflex linear dynamics were assumed to be time-invariant

except for its gain that can be modeled by the LPV

nonlinearity. This seems to be a valid assumption for

healthy subjects performing isometric, slow time-varying

contractions (for the contraction range studied in this study)

or large imposed movement at rest (Sobhani Tehrani et al.,

2014; Jalaleddini et al., 2015). However, it may not be valid for
pathological subjects whose reflex dynamics have been shown
to change with contraction level (Mirbagheri et al., 2001).
Nevertheless, if the subspace LPV-PC identification algorithm
is used to analyze a system with TV reflex dynamics,
the estimates of intrinsic pathway and corresponding
interpretations should remain almost intact. This is because,
the subspace LPV-PC identification algorithm uses an
orthogonal projection approach to decompose the torque
into intrinsic and reflex torques. Thus, any inaccuracy in
system structure assumed for reflex dynamics is not expected
to affect the estimates of intrinsic dynamics. Rather it
would bias estimates of reflex nonlinearity and result in a
decrease in torque VAF. Sobhani Tehrani (2017) recently
has developed a non-parametric LPV-PC method that
can identify SV-dependent changes in reflex dynamics.
Future work will use this to investigate the importance of
TV changes in reflex dynamics and if this improves the
predictions.

• The model parameters are assumed to be static functions
of the SV while dynamic dependencies may occur in some
functional tasks. For the slow isometric contraction trajectory
used in this work, the static dependency assumption is
expected to be valid. The VAF of its predicted torques
supports this assumption. However, assumption must be
validated for rapidly changing contractions. In general, if the
model parameters depend dynamically on the SV, the LPV
identification algorithm would not be expected to predict well.
We are not aware of any work investigating potential dynamic
dependencies between voluntary torque and joint stiffness
parameters. Indeed, the subspace LPV-PC identification
algorithm provided the tool needed to investigate such
dependencies.

• Since the voluntary torque (i.e., the SV) is not directly
measurable, we estimated it using an EMG-Torque
Hammerstein model, identified from experimental data.
The risk is that inaccuracies in the EMG-torque model, and
thus the estimated scheduling variable, may bias the identified
LPV stiffness model parameters.

Finally, note that this study was performed under open-loop
experimental conditions, where the perturbing actuator was
many times more stiffness than the ankle. Consequently, the
torque generated at the ankle could not change the position of
the actuator. This is not the case when subjects interact with
compliant loads, where closed-loop conditions may arise. The
subspace family of identification algorithms are believed to work
with data acquired in closed-loop conditions (Van Wingerden
andVerhaegen, 2009); however, validating this with experimental
data acquired specifically for LPV-PC modeling of joint stiffness
is a subject of future work.
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5.5. Clinical Significance
The subspace LPV-PC method would be an invaluable tool
for objective and quantitative assessment of neuromuscular
performance (or impairment) and motor function (or
dysfunction). In fact, the early signs of recognizing the
clinical benefits of exploiting system identification and modeling
approach have recently appeared in the literature (Meskers et al.,
2015; Sloot, 2016), where, for example, system identification was
used to assess motor dysfunction in children with cerebral palsy.
The subspace LPV-method can actually enable and expedite
this shift from conventional scoring techniques to model-based
clinical assessment, diagnosis, and treatment recommendation.
Few of the reasons are:

• It works for much more functional tasks compared to quasi-
stationary studies. In addition, the identified LPV model is
not just a predictive model. Rather, it provides a coherent
representation of the joint biomechanics where the systematic
changes are functionally related to variables within the
neuromuscular system.

• It is far more efficient than the quasi-stationary methods
because it requires many fewer trials. For example, in the
isometric TV contraction experiment of this study, we used
only two trials (UT and PT) to identify the LPV-PC model;
whereas the quasi-stationary studies require many more
trials to cover the same range of activation levels with a
fine resolution. For example, 11 trials are needed to cover
activation levels from rest to 40% MVC with a resolution of
2% MVC; thus the LPV method reduces the required number
of trials by more than 80%. Such reductions are of utmost
importance and value working with patients and in clinical
applications.

• By estimating the individual elements of the subspace
LPV-PC stiffness model, the method distinguishes between

the mechanical and reflex contributions to the abnormal
joint mechanics, which is very important from a clinical
standpoint. Thus, the method will have significant
clinical benefits for diagnosis and treatment monitoring
of patients suffering from neuromuscular diseases such as
cerebral palsy, spinal cord injury, stroke, and Parkinson’s
disease.
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