100 research outputs found

    Suppression of ischemia in arterial occlusive disease by JNK-promoted native collateral artery development

    Get PDF
    Arterial occlusive diseases are major causes of morbidity and mortality. Blood flow to the affected tissue must be restored quickly if viability and function are to be preserved. We report that disruption of the mixed-lineage protein kinase (MLK) - cJun NH2-terminal kinase (JNK) signaling pathway in endothelial cells causes severe blockade of blood flow and failure to recover in the murine femoral artery ligation model of hindlimb ischemia. We show that the MLK-JNK pathway is required for the formation of native collateral arteries that can restore circulation following arterial occlusion. Disruption of the MLK-JNK pathway causes decreased Dll4/Notch signaling, excessive sprouting angiogenesis, and defects in developmental vascular morphogenesis. Our analysis demonstrates that the MLK-JNK signaling pathway is a key regulatory mechanism that protects against ischemia in arterial occlusive disease

    Hdac3 regulates lymphovenous and lymphatic valve formation

    Get PDF
    Lymphedema, the most common lymphatic anomaly, involves defective lymphatic valve development; yet the epigenetic modifiers underlying lymphatic valve morphogenesis remain elusive. Here, we showed that during mouse development, the histone-modifying enzyme histone deacetylase 3 (Hdac3) regulates the formation of both lymphovenous valves, which maintain the separation of the blood and lymphatic vascular systems, and the lymphatic valves. Endothelium-specific ablation of Hdac3 in mice led to blood-filled lymphatic vessels, edema, defective lymphovenous valve morphogenesis, improper lymphatic drainage, defective lymphatic valve maturation, and complete lethality. Hdac3-deficient lymphovenous valves and lymphatic vessels exhibited reduced expression of the transcription factor Gata2 and its target genes. In response to oscillatory shear stress, the transcription factors Tal1, Gata2, and Ets1/2 physically interacted with and recruited Hdac3 to the evolutionarily conserved E-box-GATA-ETS composite element of a Gata2 intragenic enhancer. In turn, Hdac3 recruited histone acetyltransferase Ep300 to form an enhanceosome complex that promoted Gata2 expression. Together, these results identify Hdac3 as a key epigenetic modifier that maintains blood-lymph separation and integrates both extrinsic forces and intrinsic cues to regulate lymphatic valve development

    Mitogen Kinase Kinase (MKK7) Controls Cytokine Production In Vitro and In Vivo in Mice

    Get PDF
    Mitogen kinase kinase 4 (MKK4) and mitogen kinase kinase 7 (MKK7) are members of the MAP2K family that can activate downstream mitogen-activated protein kinases (MAPKs). MKK4 has been implicated in the activation of both c-Jun N-terminal kinase (JNK) and p38 MAPK, while MKK7 has been reported to activate only JNK in response to different stimuli. The stimuli, as well as the cell type determine which MAP2K member will mediate a given response. In various cell types, MKK7 contributes to the activation of downstream MAPKs, JNK, which is known to regulate essential cellular processes, such as cell death, differentiation, stress response, and cytokine secretion. Previous studies have also implicated the role of MKK7 in stress signaling pathways and cytokine production. However, little is known about the degree to which MKK4 and MKK7 contribute to innate immune responses in macrophages or during inflammation in vivo. To address this question and to elucidate the role of MKK4 and MKK7 in macrophage and in vivo, we developed MKK4- and MKK7-deficient mouse models with tamoxifen-inducible Rosa26 Cre(ERT). This study reports that MKK7 is required for JNK activation both in vitro and in vivo. Additionally, we demonstrated that MKK7 in macrophages is necessary for lipopolysaccharide (LPS)-induced cytokine production, M1 polarization, and migration, which appear to be a major contributor to the inflammatory response in vivo. Conversely, MKK4 plays a significant, but minor role in cytokine production in vivo

    Genome-Wide Association with Select Biomarker Traits in the Framingham Heart Study

    Get PDF
    BACKGROUND: Systemic biomarkers provide insights into disease pathogenesis, diagnosis, and risk stratification. Many systemic biomarker concentrations are heritable phenotypes. Genome-wide association studies (GWAS) provide mechanisms to investigate the genetic contributions to biomarker variability unconstrained by current knowledge of physiological relations. METHODS: We examined the association of Affymetrix 100K GeneChip single nucleotide polymorphisms (SNPs) to 22 systemic biomarker concentrations in 4 biological domains: inflammation/oxidative stress; natriuretic peptides; liver function; and vitamins. Related members of the Framingham Offspring cohort (n = 1012; mean age 59 ± 10 years, 51% women) had both phenotype and genotype data (minimum-maximum per phenotype n = 507–1008). We used Generalized Estimating Equations (GEE), Family Based Association Tests (FBAT) and variance components linkage to relate SNPs to multivariable-adjusted biomarker residuals. Autosomal SNPs (n = 70,987) meeting the following criteria were studied: minor allele frequency ≥ 10%, call rate ≥ 80% and Hardy-Weinberg equilibrium p ≥ 0.001. RESULTS: With GEE, 58 SNPs had p < 10-6: the top SNPs were rs2494250 (p = 1.00*10-14) and rs4128725 (p = 3.68*10-12) for monocyte chemoattractant protein-1 (MCP1), and rs2794520 (p = 2.83*10-8) and rs2808629 (p = 3.19*10-8) for C-reactive protein (CRP) averaged from 3 examinations (over about 20 years). With FBAT, 11 SNPs had p < 10-6: the top SNPs were the same for MCP1 (rs4128725, p = 3.28*10-8, and rs2494250, p = 3.55*10-8), and also included B-type natriuretic peptide (rs437021, p = 1.01*10-6) and Vitamin K percent undercarboxylated osteocalcin (rs2052028, p = 1.07*10-6). The peak LOD (logarithm of the odds) scores were for MCP1 (4.38, chromosome 1) and CRP (3.28, chromosome 1; previously described) concentrations; of note the 1.5 support interval included the MCP1 and CRP SNPs reported above (GEE model). Previous candidate SNP associations with circulating CRP concentrations were replicated at p < 0.05; the SNPs rs2794520 and rs2808629 are in linkage disequilibrium with previously reported SNPs. GEE, FBAT and linkage results are posted at . CONCLUSION: The Framingham GWAS represents a resource to describe potentially novel genetic influences on systemic biomarker variability. The newly described associations will need to be replicated in other studies.National Heart, Lung, and Blood Institute's Framingham Heart Study (N01-HC25195); National Institutes of Health National Center for Research Resources Shared Instrumentation grant (1S10RR163736-01A1); National Institutes of Health (HL064753, HL076784, AG028321, HL71039, 2 K24HL04334, 1K23 HL083102); Doris Duke Charitable Foundation; American Diabetes Association Career Developement Award; National Center for Research Resources (GCRC M01-RR01066); US Department of Agriculture Agricultural Research Service (58-1950-001, 58-1950-401); National Institute of Aging (AG14759

    Atherosclerotic Biomarkers and Aortic Atherosclerosis by Cardiovascular Magnetic Resonance Imaging in the Framingham Heart Study

    Get PDF
    Background: The relations between subclinical atherosclerosis and inflammatory biomarkers have generated intense interest but their significance remains unclear. We sought to determine the association between a panel of biomarkers and subclinical aortic atherosclerosis in a community‐based cohort. Methods and Results: We evaluated 1547 participants of the Framingham Heart Study Offspring cohort who attended the 7th examination cycle and underwent both cardiovascular magnetic resonance imaging (CMR) and assays for 10 biomarkers associated with atherosclerosis: high‐sensitivity C‐reactive protein, fibrinogen, intercellular adhesion molecule‐1, interleukin‐6, interleukin‐18, lipoprotein‐associated phospholipase‐A2 activity and mass, monocyte chemoattractant protein‐1, P‐selectin, and tumor necrosis factor receptor‐2. In logistic regression analysis, we found no significant association between the biomarker panel and the presence of aortic plaque (global P=0.53). Using Tobit regression with aortic plaque as a continuous variable, we noted a modest association between biomarker panel and aortic plaque volume in age‐ and sex‐adjusted analyses (P=0.003). However, this association was attenuated after further adjustment for clinical covariates (P=0.09). Conclusions: In our community‐based cohort, we found no significant association between our multibiomarker panel and aortic plaque. Our results underscore the strengths and limitations of the use of biomarkers for the identification of subclinical atherosclerosis and the importance of traditional risk factors

    Heart rate, mortality, and the relation with clinical and subclinical cardiovascular diseases: results from the Gutenberg Health Study

    Get PDF
    BACKGROUND: Higher, but also lower resting heart rate (HR), has been associated with increased cardiovascular events and mortality. Little is known about the interplay between HR, cardiovascular risk factors, concomitant diseases, vascular (endothelial) function, neurohormonal biomarkers, and all-cause mortality in the general population. Thus, we aimed to investigate these relationships in a population-based cohort. METHODS: 15,010 individuals (aged 35-74 at enrolment in 2007-2012) from the Gutenberg Health Study were analyzed. Multivariable regression modeling was used to assess the relation between the variables and conditional density plots were generated for cardiovascular risk factors, diseases, and mortality to show their dependence on HR. RESULTS: There were 714 deaths in the total sample at 7.67 +/- 1.68 years of follow-up. The prevalence of diabetes mellitus, arterial hypertension, coronary and peripheral artery disease, chronic heart failure, and previous myocardial infarction exhibited a J-shaped association with HR. Mortality showed a similar relation with a nadir of 64 beats per minute (bpm) in the total sample. Each 10 bpm HR reduction in HR \u3c 64 subjects was independently associated with increased mortality (Hazard Ratio 1.36; 95% confidence interval 1.06-1.75). This increased risk was also present in HR \u3e 64 subjects (Hazard Ratio 1.29; 95% confidence interval 1.19-1.41 per 10 bpm increase in HR). Results found for vascular and neurohormonal biomarkers exhibited a differential picture in subjects with a HR below and above the nadir. DISCUSSION: These results indicate that in addition to a higher HR, a lower HR is associated with increased mortality

    Plasma microRNAs are Associated with Atrial Fibrillation (the miRhythm Study) and Change After Catheter-ablation

    Get PDF
    Background: Atrial fibrillation (AF) is the most common dysrhythmia in the U.S. and Europe. Few biomarkers exist to identify individuals at risk for AF. Cardiac microRNAs (miRNAs) have been implicated in susceptibility to AF and are detectable in the circulation. Nevertheless, data are limited on how circulating levels of miRNAs relate to AF or change over time after catheter- ablation. Methods: In 211 miRhythm participants (112 with paroxysmal or persistent AF; 99 without AF), we quantified plasma expression of 86 miRNAs associated with cardiac remodeling or disease by high-throughput quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). We used qRT-PCR to examine change in plasma miRNA expression from baseline to 1-month after ablation in 47 participants. We also quantified expression of the 20 most variable miRNAs in atrial tissue in 31 participants undergoing cardiac surgery. Results: The mean age of the miRhythm cohort was 59 years and 58% of participants were men. 21 miRNAs differed significantly between participants with AF and those with no AF in regression models adjusting for known AF risk factors (p value of ≤ 0.0006). Several miRNAs associated with AF, including miR-21, miR-29a, miR-122, miR-150, miR-320, and miR-92a, regulate expression of genes implicated in the pathogenesis of AF. Levels of 33 miRNAs, including 14 associated with AF, changed significantly between baseline and 1-month after catheter ablation (p value of ≤ 0.0006). Although all AF-related plasma miRNAs were expressed in atrial tissue, only miR-21 and miR-411 differed significantly with respect to preoperative AF status. Conclusions: Plasma levels of miRNAs associated with heart disease and cardiac remodeling were related to AF and changed after catheter-ablation. Our study suggests that AF has a unique circulating miRNA profile and that this profile is influenced by catheter-ablation

    No Evidence for Association of Autism with Rare Heterozygous Point Mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins

    Get PDF
    Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk

    Mitogen Kinase Kinase (MKK7) Controls Cytokine Production In Vitro and In Vivo in Mice

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-08-27, pub-electronic 2021-08-29Publication status: PublishedFunder: National Institutes of Health; Grant(s): HL151626, DK107220,Funder: American Heart Association; Grant(s): 16SDG29660007Mitogen kinase kinase 4 (MKK4) and mitogen kinase kinase 7 (MKK7) are members of the MAP2K family that can activate downstream mitogen-activated protein kinases (MAPKs). MKK4 has been implicated in the activation of both c-Jun N-terminal kinase (JNK) and p38 MAPK, while MKK7 has been reported to activate only JNK in response to different stimuli. The stimuli, as well as the cell type determine which MAP2K member will mediate a given response. In various cell types, MKK7 contributes to the activation of downstream MAPKs, JNK, which is known to regulate essential cellular processes, such as cell death, differentiation, stress response, and cytokine secretion. Previous studies have also implicated the role of MKK7 in stress signaling pathways and cytokine production. However, little is known about the degree to which MKK4 and MKK7 contribute to innate immune responses in macrophages or during inflammation in vivo. To address this question and to elucidate the role of MKK4 and MKK7 in macrophage and in vivo, we developed MKK4- and MKK7-deficient mouse models with tamoxifen-inducible Rosa26 CreERT. This study reports that MKK7 is required for JNK activation both in vitro and in vivo. Additionally, we demonstrated that MKK7 in macrophages is necessary for lipopolysaccharide (LPS)-induced cytokine production, M1 polarization, and migration, which appear to be a major contributor to the inflammatory response in vivo. Conversely, MKK4 plays a significant, but minor role in cytokine production in vivo

    Adipose Tissue Depots and Their Cross‐Sectional Associations With Circulating Biomarkers of Metabolic Regulation

    Get PDF
    Background: Visceral adipose tissue (VAT) and fatty liver differ in their associations with cardiovascular risk compared with subcutaneous adipose tissue (SAT). Several biomarkers have been linked to metabolic derangements and may contribute to the pathogenicity of fat depots. We examined the association between fat depots on multidetector computed tomography and metabolic regulatory biomarkers. Methods and Results: Participants from the Framingham Heart Study (n=1583, 47% women) underwent assessment of SAT, VAT, and liver attenuation. We measured circulating biomarkers secreted by adipose tissue or liver (adiponectin, leptin, leptin receptor, fatty acid binding protein 4, fetuin‐A, and retinol binding protein 4). Using multivariable linear regression models, we examined relations of fat depots with biomarkers. Higher levels of fat depots were positively associated with leptin and fatty acid binding protein 4 but negatively associated with adiponectin (all P<0.001). Associations with leptin receptor, fetuin‐A, and retinol binding protein 4 varied according to fat depot type or sex. When comparing the associations of SAT and VAT with biomarkers, VAT was the stronger correlate of adiponectin (β=−0.28 [women]; β=−0.30 [men]; both P<0.001), whereas SAT was the stronger correlate of leptin (β=0.62 [women]; β=0.49 [men]; both P<0.001; P<0.001 for comparing VAT versus SAT). Although fetuin‐A and retinol binding protein 4 are secreted by the liver in addition to adipose tissue, associations of liver attenuation with these biomarkers was not stronger than that of SAT or VAT. Conclusions: SAT, VAT, and liver attenuation are associated with metabolic regulatory biomarkers with differences in the associations by fat depot type and sex. These findings support the possibility of biological differences between fat depots
    • …
    corecore