540 research outputs found

    Predicting successional plant composition on a Pseudotsuga menziesii/Physocarpus malvaceus habitat type in western Montana

    Get PDF

    Effects of Climate Change on Forest Vegetation in the Northern Rockies Region

    Get PDF

    FIRE-BGC--A Mechanistic Ecological Process Model for Simulating Fire Succession on Coniferous Forest Landscapes of the Northern Rocky Mountains

    Get PDF
    An ecological process model of vegetation dynamics mechanistically simulates long-term stand dynamics on coniferous landscapes of the Northern Rocky Mountains. This model is used to investigate and evaluate cumulative effects of various fire regimes, including prescribed burning and fire exclusion, on the vegetation and fuel complex of a simulation landscape composed of many stands. Detailed documentation of the model FIRE-BGC (a FIRE BioGeoChemical succession model) with complete discussion of all model parameters is followed with results of an application of the FIRE-BGC to a whitebark pine landscape in the Bob Marshall Wilderness Complex. Simulation results of several management scenarios are contrasted to predict the fate of whitebark pine over 200 years. Model testing reveals predictions within 10 to 30 percent of observed values

    Fire and Fish Dynamics in a Changing Climate: Broad- and Local-Scale Effects of Fire-Induced Water Temperature Changes on Native and Nonnative Fish Communities

    Get PDF
    Fire is a key natural disturbance that affects the distribution and abundance of native fishes in the Rocky Mountain West. In the absence of migratory individuals from undisturbed portions of a watershed, persistence of native fish populations depends on the conditions of the post-fire stream environment. Stream temperatures typically warm after fire, and remain elevated until riparian vegetation recovers. An additional threat to native species is that nonnative fishes have invaded many waters, and these species tolerate or prefer warmer water temperatures. Thus, forecasting the long-term effects of fire on native fish populations requires an understanding of fire dynamics (size, distribution, frequency, and severity), the extent and location of changes in riparian forest structure and time to recovery, changes in stream temperatures associated with these forest changes, and how native and nonnative fish respond to changes in water temperature. To perform spatially explicit simulation modeling that examined the relations among fire disturbance, stream temperature, and fish communities, we upgraded and then linked the fire-forest succession model FireBGCv2 to a stream temperature model to project changes in water temperature in the East Fork Bitterroot River basin in Montana under an array of climate and fire management scenarios. Model projections indicated that although climate led to increases in fire severity, frequency, or size, water temperature increases at the basin scale were primarily a consequence of climate-driven atmospheric warming rather than changes in fire regime. Consequently, variation in fire management—fuel treatment or fire suppression—had little effect at this scale, but assumed greater importance at the scale of riparian stands. By revisiting a large number of previously sampled sites in the East Fork Bitterroot River basin in Montana, we evaluated whether bull trout persistence and other native and nonnative fish distributions were related to temperature changes associated with fire and recent climatic trends. Although fires were related to marked increases in summer water temperatures, these changes had a positive effect (westslope cutthroat trout) or a negligible effect (bull trout) on the abundance and distribution of native fish species, whereas the abundance of nonnative brook trout markedly declined in some instances. Fire-related changes in factors other than the thermal regime may have contributed to these patterns. In contrast, at the scale of the entire basin we observed an upward-directed contraction in the distribution of bull trout that was unrelated to fire. We concluded that this may be a response to temperature increases related to climate change

    Fire and Fish Dynamics in a Changing Climate: Broad- and Local-Scale Effects of Fire-Induced Water Temperature Changes on Native and Nonnative Fish Communities

    Get PDF
    Fire is a key natural disturbance that affects the distribution and abundance of native fishes in the Rocky Mountain West. In the absence of migratory individuals from undisturbed portions of a watershed, persistence of native fish populations depends on the conditions of the post-fire stream environment. Stream temperatures typically warm after fire, and remain elevated until riparian vegetation recovers. An additional threat to native species is that nonnative fishes have invaded many waters, and these species tolerate or prefer warmer water temperatures. Thus, forecasting the long-term effects of fire on native fish populations requires an understanding of fire dynamics (size, distribution, frequency, and severity), the extent and location of changes in riparian forest structure and time to recovery, changes in stream temperatures associated with these forest changes, and how native and nonnative fish respond to changes in water temperature. To perform spatially explicit simulation modeling that examined the relations among fire disturbance, stream temperature, and fish communities, we upgraded and then linked the fire-forest succession model FireBGCv2 to a stream temperature model to project changes in water temperature in the East Fork Bitterroot River basin in Montana under an array of climate and fire management scenarios. Model projections indicated that although climate led to increases in fire severity, frequency, or size, water temperature increases at the basin scale were primarily a consequence of climate-driven atmospheric warming rather than changes in fire regime. Consequently, variation in fire management—fuel treatment or fire suppression—had little effect at this scale, but assumed greater importance at the scale of riparian stands. By revisiting a large number of previously sampled sites in the East Fork Bitterroot River basin in Montana, we evaluated whether bull trout persistence and other native and nonnative fish distributions were related to temperature changes associated with fire and recent climatic trends. Although fires were related to marked increases in summer water temperatures, these changes had a positive effect (westslope cutthroat trout) or a negligible effect (bull trout) on the abundance and distribution of native fish species, whereas the abundance of nonnative brook trout markedly declined in some instances. Fire-related changes in factors other than the thermal regime may have contributed to these patterns. In contrast, at the scale of the entire basin we observed an upward-directed contraction in the distribution of bull trout that was unrelated to fire. We concluded that this may be a response to temperature increases related to climate change

    Toward a more ecologically informed view of severe forest fires

    Get PDF
    We use the historical presence of high-severity fire patches in mixed-conifer forests of the western United States to make several points that we hope will encourage development of a more ecologically informed view of severe wildland fire effects. First, many plant and animal species use, and have sometimes evolved to depend on, severely burned forest conditions for their persistence. Second, evidence from fire history studies also suggests that a complex mosaic of severely burned conifer patches was common historically in the West. Third, to maintain ecological integrity in forests born of mixed-severity fire, land managers will have to accept some severe fire and maintain the integrity of its aftermath. Lastly, public education messages surrounding fire could be modified so that people better understand and support management designed to maintain ecologically appropriate sizes and distributions of severe fire and the complex early-seral forest conditions it creates

    Exploring the role of fire, succession, climate, and weather on landscape dynamics using comparative modelling

    Get PDF
    An assessment of the relative importance of vegetation change and disturbance as agents of landscape change under current and future climates would (1) provide insight into the controls of landscape dynamics, (2) help inform the design and development o

    Assessing simulation ecosystem processes for climate variability research at Glacier National Park

    Get PDF
    Glacier National Park served as a test site for ecosystem analyses that involved a suite of integrated models embedded within a geographic information system. The goal of the exercise was to provide managers with maps that could illustrate probable shifts in vegetation, net primary production (NPP), and hydrologic responses associated with two selected climatic scenarios. The climatic scenarios were (a) a recent 12-yr record of weather data, and (b) a reconstituted set that sequentially introduced in repeated 3-yr intervals wetter–cooler, drier–warmer, and typical conditions. To extrapolate the implications of changes in ecosystem processes and resulting growth and distribution of vegetation and snowpack, the model incorporated geographic data. With underlying digital elevation maps, soil depth and texture, extrapolated climate, and current information on vegetation types and satellite-derived estimates of leaf area indices, simulations were extended to envision how the park might look after 120 yr. The predictions of change included underlying processes affecting the availability of water and nitrogen. Considerable field data were acquired to compare with model predictions under current climatic conditions. In general, the integrated landscape models of ecosystem processes had good agreement with measured NPP, snowpack, and streamflow, but the exercise revealed the difficulty and necessity of averaging point measurements across landscapes to achieve comparable results with modeled values. Under the extremely variable climate scenario significant changes in vegetation composition and growth as well as hydrologic responses were predicted across the park. In particular, a general rise in both the upper and lower limits of treeline was predicted. These shifts would probably occur along with a variety of disturbances (fire, insect, and disease outbreaks) as predictions of physiological stress (water, nutrients, light) altered competitive relations and hydrologic responses. The use of integrated landscape models applied in this exercise should provide managers with insights into the underlying processes important in maintaining community structure, and at the same time, locate where changes on the landscape are most likely to occur

    CXC chemokines in angiogenesis

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141036/1/jlb0001.pd
    • …
    corecore