47 research outputs found

    Evaluation of objective vitritis grading method using optical coherence tomography: influence of phakic status and previous vitrectomy

    Get PDF
    PURPOSE: To evaluate a proposed method for objective measurement of vitreous inflammation using a spectral. domain optical coherence tomography (SD OCT) device in a large cohort of uveitis eyes, including pseudophakic eyes and vitrectomized eyes. DESIGN: Retrospective, observational cohort study. METHODS: One hundred five uveitis eyes (105 patients) with different vitreous haze score grades according to standardized protocols and corresponding SD OCT images (Cirrus HD-OCT; Carl Zeiss Meditec, Dublin, California, USA) were included. Clinical data recorded included phakic status, previous vitreoretinal surgery, and anterior chamber (AC) cells and flare. SD OCT images were analyzed using custom software that provided absolute measurements of vitreous (VIT) and retinal pigment epithelium (RPE) signal intensities, which were compared to generate a relative optical density ratio with arbitrary units (VIT/RPE-relative intensity) and compared to VHS. RESULTS: VIT/RPE-relative intensity showed a significant positive correlation with vitreous haze score (r = 0.535, P <.001) that remained significant after adjusting for factors governing media clarity, such as AC cells, AC flare, and phakic status (R-2-adjusted = 0.424, P <.001). Significant differences were also observed between the different vitreous haze score groups (P <.001). Preliminary observation did not observe differences in VIT/RPE-relative intensity values between phakic and pseudophakic eyes (0.3522 vs 0.3577, P =.48) and between nonvitrectomized and vitrectomized eyes (0.3540 vs 0.3580, P = .52), overall and respectively for each vitreous haze score subgroup. CONCLUSIONS: VIT/RPE-relative intensity values provide objective measurements of vitreous inflammation employing an SD OCT device. Phakic status and previous vitrectomy su

    Phenotyping of ABCA4 Retinopathy by Machine Learning Analysis of Full-Field Electroretinography

    Get PDF
    PURPOSE: Biallelic pathogenic variants in ABCA4 are the commonest cause of monogenic retinal disease. The full-field electroretinogram (ERG) quantifies severity of retinal dysfunction. We explored application of machine learning in ERG interpretation and in genotype–phenotype correlations. METHODS: International standard ERGs in 597 cases of ABCA4 retinopathy were classified into three functional phenotypes by human experts: macular dysfunction alone (group 1), or with additional generalized cone dysfunction (group 2), or both cone and rod dysfunction (group 3). Algorithms were developed for automatic selection and measurement of ERG components and for classification of ERG phenotype. Elastic-net regression was used to quantify severity of specific ABCA4 variants based on effect on retinal function. RESULTS: Of the cohort, 57.6%, 7.4%, and 35.0% fell into groups 1, 2, and 3 respectively. Compared with human experts, automated classification showed overall accuracy of 91.8% (SE, 0.169), and 96.7%, 39.3%, and 93.8% for groups 1, 2, and 3. When groups 2 and 3 were combined, the average holdout group accuracy was 93.6% (SE, 0.142). A regression model yielded phenotypic severity scores for the 47 commonest ABCA4 variants. CONCLUSIONS: This study quantifies prevalence of phenotypic groups based on retinal function in a uniquely large single-center cohort of patients with electrophysiologically characterized ABCA4 retinopathy and shows applicability of machine learning. Novel regression-based analyses of ABCA4 variant severity could identify individuals predisposed to severe disease. Translational Relevance: Machine learning can yield meaningful classifications of ERG data, and data-driven scoring of genetic variants can identify patients likely to benefit most from future therapies

    Fundus topographical distribution patterns of ocular toxoplasmosis

    Get PDF
    BACKGROUND: To establish topographic maps and determine fundus distribution patterns of ocular toxoplasmosis (OT) lesions. METHODS: In this retrospective study, patients who presented with OT to ophthalmology clinics from four countries (Argentina, Turkey, UK, USA) were included. Size, shape and location of primary (1°)/recurrent (2°) and active/inactive lesions were converted into a two-dimensional retinal chart by a retinal drawing software. A final contour map of the merged image charts was then created using a custom Matlab programme. Descriptive analyses were performed. RESULTS: 984 lesions in 514 eyes of 464 subjects (53% women) were included. Mean area of all 1° and 2° lesions was 5.96±12.26 and 5.21±12.77 mm2, respectively. For the subset group lesions (eyes with both 1° and 2° lesions), 1° lesions were significantly larger than 2° lesions (5.52±6.04 mm2 vs 4.09±8.90 mm2, p=0.038). Mean distances from foveola to 1° and 2° lesion centres were 6336±4267 and 5763±3491 µm, respectively. The majority of lesions were found in temporal quadrant (p<0.001). Maximum overlap of all lesions was at 278 µm inferotemporal to foveola. CONCLUSION: The 1° lesions were larger than 2° lesions. The 2° lesions were not significantly closer to fovea than 1° lesions. Temporal quadrant and macular region were found to be densely affected underlining the vision threatening nature of the disease

    SynthEye: Investigating the Impact of Synthetic Data on Artificial Intelligence-assisted Gene Diagnosis of Inherited Retinal Disease

    Get PDF
    PURPOSE: Rare disease diagnosis is challenging in medical image-based artificial intelligence due to a natural class imbalance in datasets, leading to biased prediction models. Inherited retinal diseases (IRDs) are a research domain that particularly faces this issue. This study investigates the applicability of synthetic data in improving artificial intelligence-enabled diagnosis of IRDs using generative adversarial networks (GANs). DESIGN: Diagnostic study of gene-labeled fundus autofluorescence (FAF) IRD images using deep learning. PARTICIPANTS: Moorfields Eye Hospital (MEH) dataset of 15 692 FAF images obtained from 1800 patients with confirmed genetic diagnosis of 1 of 36 IRD genes. METHODS: A StyleGAN2 model is trained on the IRD dataset to generate 512 × 512 resolution images. Convolutional neural networks are trained for classification using different synthetically augmented datasets, including real IRD images plus 1800 and 3600 synthetic images, and a fully rebalanced dataset. We also perform an experiment with only synthetic data. All models are compared against a baseline convolutional neural network trained only on real data. MAIN OUTCOME MEASURES: We evaluated synthetic data quality using a Visual Turing Test conducted with 4 ophthalmologists from MEH. Synthetic and real images were compared using feature space visualization, similarity analysis to detect memorized images, and Blind/Referenceless Image Spatial Quality Evaluator (BRISQUE) score for no-reference-based quality evaluation. Convolutional neural network diagnostic performance was determined on a held-out test set using the area under the receiver operating characteristic curve (AUROC) and Cohen's Kappa (κ). RESULTS: An average true recognition rate of 63% and fake recognition rate of 47% was obtained from the Visual Turing Test. Thus, a considerable proportion of the synthetic images were classified as real by clinical experts. Similarity analysis showed that the synthetic images were not copies of the real images, indicating that copied real images, meaning the GAN was able to generalize. However, BRISQUE score analysis indicated that synthetic images were of significantly lower quality overall than real images (P < 0.05). Comparing the rebalanced model (RB) with the baseline (R), no significant change in the average AUROC and κ was found (R-AUROC = 0.86[0.85-88], RB-AUROC = 0.88[0.86-0.89], R-k = 0.51[0.49-0.53], and RB-k = 0.52[0.50-0.54]). The synthetic data trained model (S) achieved similar performance as the baseline (S-AUROC = 0.86[0.85-87], S-k = 0.48[0.46-0.50]). CONCLUSIONS: Synthetic generation of realistic IRD FAF images is feasible. Synthetic data augmentation does not deliver improvements in classification performance. However, synthetic data alone deliver a similar performance as real data, and hence may be useful as a proxy to real data. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references

    Concordance of randomised controlled trials for artificial intelligence interventions with the CONSORT-AI reporting guidelines

    Get PDF
    The Consolidated Standards of Reporting Trials extension for Artificial Intelligence interventions (CONSORT-AI) was published in September 2020. Since its publication, several randomised controlled trials (RCTs) of AI interventions have been published but their completeness and transparency of reporting is unknown. This systematic review assesses the completeness of reporting of AI RCTs following publication of CONSORT-AI and provides a comprehensive summary of RCTs published in recent years. 65 RCTs were identified, mostly conducted in China (37%) and USA (18%). Median concordance with CONSORT-AI reporting was 90% (IQR 77–94%), although only 10 RCTs explicitly reported its use. Several items were consistently under-reported, including algorithm version, accessibility of the AI intervention or code, and references to a study protocol. Only 3 of 52 included journals explicitly endorsed or mandated CONSORT-AI. Despite a generally high concordance amongst recent AI RCTs, some AI-specific considerations remain systematically poorly reported. Further encouragement of CONSORT-AI adoption by journals and funders may enable more complete adoption of the full CONSORT-AI guidelines

    Retinal Optical Coherence Tomography Features Associated With Incident and Prevalent Parkinson Disease

    Get PDF
    Background and objectives: Cadaveric studies have shown disease-related neurodegeneration and other morphological abnormalities in the retina of individuals with Parkinson disease (PD), however it remains unclear whether this can be reliably detected with in vivo imaging. We investigated inner retinal anatomy, measured using optical coherence tomography (OCT), in prevalent PD and subsequently assessed the association of these markers with the development of PD using a prospective research cohort.// Methods: This cross-sectional analysis used data from two studies. For the detection of retinal markers in prevalent PD, we used data from AlzEye, a retrospective cohort of 154,830 patients aged 40 years and over attending secondary care ophthalmic hospitals in London, UK between 2008 and 2018. For the evaluation of retinal markers in incident PD, we used data from UK Biobank, a prospective population-based cohort where 67,311 volunteers aged 40-69 years were recruited between 2006 and 2010 and underwent retinal imaging. Macular retinal nerve fibre layer (mRNFL), ganglion cell-inner plexiform layer (GCIPL), and inner nuclear layer (INL) thicknesses were extracted from fovea--centred OCT. Linear mixed effects models were fitted to examine the association between prevalent PD and retinal thicknesses. Hazard ratios for the association between time to PD diagnosis and retinal thicknesses were estimated using frailty models.// Results: Within the AlzEye cohort, there were 700 individuals with prevalent PD and 105,770 controls (mean age 65.5 ± 13.5 years, 51.7% female). Individuals with prevalent PD had thinner GCIPL (-2.12 μm, 95% confidence interval: -3.17, -1.07, p = 8.2 × 10⁻⁵) and INL (-0.99 μm, 95% confidence interval: -1.52, -0.47, p = 2.1 × 10⁻⁴). The UK Biobank included 50,405 participants (mean age 56.1 ± 8.2 years, 54.7% female), of whom 53 developed PD at a mean of 2653 ± 851 days. Thinner GCIPL (hazard ratio: 0.62 per standard deviation increase, 95% confidence interval: 0.46, 0.84, p=0.002) and thinner INL (hazard ratio: 0.70, 95% confidence interval: 0.51, 0.96, p=0.026) were also associated with incident PD.// Discussion: Individuals with PD have reduced thickness of the INL and GCIPL of the retina. Involvement of these layers several years before clinical presentation highlight a potential role for retinal imaging for at-risk stratification of PD

    Associations with photoreceptor thickness measures in the UK Biobank.

    Get PDF
    Spectral-domain OCT (SD-OCT) provides high resolution images enabling identification of individual retinal layers. We included 32,923 participants aged 40-69 years old from UK Biobank. Questionnaires, physical examination, and eye examination including SD-OCT imaging were performed. SD OCT measured photoreceptor layer thickness includes photoreceptor layer thickness: inner nuclear layer-retinal pigment epithelium (INL-RPE) and the specific sublayers of the photoreceptor: inner nuclear layer-external limiting membrane (INL-ELM); external limiting membrane-inner segment outer segment (ELM-ISOS); and inner segment outer segment-retinal pigment epithelium (ISOS-RPE). In multivariate regression models, the total average INL-RPE was observed to be thinner in older aged, females, Black ethnicity, smokers, participants with higher systolic blood pressure, more negative refractive error, lower IOPcc and lower corneal hysteresis. The overall INL-ELM, ELM-ISOS and ISOS-RPE thickness was significantly associated with sex and race. Total average of INL-ELM thickness was additionally associated with age and refractive error, while ELM-ISOS was additionally associated with age, smoking status, SBP and refractive error; and ISOS-RPE was additionally associated with smoking status, IOPcc and corneal hysteresis. Hence, we found novel associations of ethnicity, smoking, systolic blood pressure, refraction, IOPcc and corneal hysteresis with photoreceptor thickness
    corecore