4 research outputs found

    Skin ulceration as a complication from unexpected extravasation injury: A case report

    Get PDF
    Extravasation injury (EVI) is common, yet it is always underestimated and underreported. Severity varies ranging from thrombophlebitis up to disability. Unrecognised EVI is a potential medicolegal case in medicine. We experience a 47-year-old lady who developed an unrecognised EVI after being admitted for sepsis. The EVI turned out to be a huge and sloughy skin ulcer. A series of wound debridement with vacuum dressing were conducted until the wound was able to be closed. The EVI can be categorised according to Amjad EVI grading and Loth and Eversmann’s EVI classification. Adult EVI tends to be overlooked, especially during critical care because patients cannot complain upon sedation and ventilation. In order to prevent EVI, firstly prevention is better than cure. Secondly, if EVI is recognised early, infusion should be stopped immediately. Thirdly, analgesia is mandatory. Finally, the plastic team needs to be engaged if it is deemed required. Prevention and early intervention before the occurrence of progressive tissue damage is the key to treatment. Early radical wound debridement and immediate or delayed wound coverage with skin graft or skin flap are indicated in full thickness skin necrosis, persistent pain, and chronic ulcer

    Use of extracorporeal blood purification therapy (ECBPT) as an adjuvant to high-dose corticosteroids in a severely ill COVID-19 patient with concomitant bacterial infection

    Get PDF
    COVID-19 presents with a spectrum of severity, ranging from asymptomatic or mild symptoms to those with acute respiratory distress syndrome. Corticosteroids are widely used for their efficacy in reducing inflammatory responses. However, its use may be limited to patients with immunosuppression. An adjunct therapy for cytokine storm in COVID- 19 is extracorporeal blood purification therapies using high adsorptive filters, such as oXiris, to remove cytokines. We share our experience in using continuous renal replacement therapy with oXiris haemofilter as a temporising measure to high- dose corticosteroids in managing cytokine storm in a deteriorating COVID- 19 patient with concomitant bacterial infection

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose: In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods: We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results: 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions: HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes.</p

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes
    corecore