1,042 research outputs found

    A Monitoring System for Vegetable Greenhouses based on a Wireless Sensor Network

    Get PDF
    A wireless sensor network-based automatic monitoring system is designed for monitoring the life conditions of greenhouse vegetatables. The complete system architecture includes a group of sensor nodes, a base station, and an internet data center. For the design of wireless sensor node, the JN5139 micro-processor is adopted as the core component and the Zigbee protocol is used for wireless communication between nodes. With an ARM7 microprocessor and embedded ZKOS operating system, a proprietary gateway node is developed to achieve data influx, screen display, system configuration and GPRS based remote data forwarding. Through a Client/Server mode the management software for remote data center achieves real-time data distribution and time-series analysis. Besides, a GSM-short-message-based interface is developed for sending real-time environmental measurements, and for alarming when a measurement is beyond some pre-defined threshold. The whole system has been tested for over one year and satisfactory results have been observed, which indicate that this system is very useful for greenhouse environment monitoring

    Bis(4-amino­benzene­sulfonato-κO)bis­(propane-1,3-diamine-κ2 N,N′)copper(II) dihydrate

    Get PDF
    In the title compound, [Cu(C3H10N2)2(C6H6NO3S)2]·2H2O, the CuII atom lies on an inversion center and is hexa­coordinated by four N atoms from two 1,3-diamino­propane ligands and two O atoms from two 4-amino­benzene­sulfonate ligands in a trans arrangement, displaying a distorted and axially elongated octa­hedral coordination geometry, with the O atoms at the axial positions. A three-dimensional network is formed in the crystal structure through O—H⋯O, N—H⋯O and N—H⋯N hydrogen bonds

    A protocol specialized for microbial DNA extraction from living poplar wood

    Get PDF
    Microbial DNA extraction is a critical step in metagenomic research. High contents of chemical substances in wood tissues always cause low microbial DNA yield and quality. Up to date, almost no specialized methods involved in microbial DNA extraction from living wood were reported. In this study, an improved protocol (M1) concerning microbial DNA extraction from living poplar wood was developed. We compared microbial DNA yield and quality by M1 with those by other seven methods, including PowerSoil DNA isolation kit (M2), two soil microbial DNA extraction methods (M3 and M4), poplar genomic DNA extraction method from wood (M5), and microbial DNA extraction method from herb stems (M6), isolating bacteria (M7) and isolating fungus (M8). Results showed that M1 yielded much better quality and concentration of microbial DNA than the other methods (M2-M8) from both poplar wetwood and sapwood tissues. Following M1 protocol, 1 g of wetwood sample could yield 272.27 ng/ul (vol=50 ul) pure microbial DNA with the absorption ratios of 1.87 (A260/A230) and 1.66 (A260/A280). For 1 g of sapwood sample, these values were 361.83 ng/ul, 1.85 and 2.24, respectively. These DNA could be stably visualized by agarose gel electrophoresis and amplified by primer sets of bacteria (16S V3-V4, 16S-V4, 16S V4-V5) and fungus (ITS1, ITS2). While, the other seven methods only obtained less or contaminated microbial DNA, which could not be amplified stably by aforementioned primer sets. Our protocol provided an approach for microbial community study in living poplar wood in a more accurate way by molecular biology techniques

    (meso-5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetra­azacyclo­tetra­deca-4,11-diene)nickel(II) bis­[O,O′-bis(4-methyl­phen­yl) dithio­phosphate]

    Get PDF
    In the title compound, [Ni(C16H32N4)](C14H14O2PS2)2 or [Ni(trans[14]dien)][S2P(OC6H4Me-4)2]2, where trans[14]dien is meso-5,7,7,12,14,14-hexa­methyl-1,4,8,11-tetra­azacyclo­tetra­deca-4,11-diene, the NiII ion lies across a centre of inversion and is four-coordinated in a relatively undistorted square-planar arrangement by the four N atoms of the macrocyclic ligand trans[14]dien. The two O,O′-di(4-methyl­phen­yl)dithio­phos­phates act as counter-ions to balance the charge. Important geometric data include Ni—N = 1.9135 (16) and 1.9364 (15) Å

    Effects of carpal tunnel syndrome on force coordination and muscle coherence during precision pinch

    Get PDF
    Carpal tunnel syndrome (CTS), caused by entrapment of the median nerve in the carpal tunnel, impairs hand function including dexterous manipulation. The purpose of this study was to investigate the effects of CTS on force coordination and muscle coherence during low-intensity sustained precision pinch while the wrist assumed different postures. Twenty subjects (10 CTS patients and 10 asymptomatic controls) participated in this study. An instrumented pinch device was used to measure the thumb and index finger forces while simultaneously collecting surface electromyographic activities of the abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles. Subjects performed a sustained precision pinch at 10% maximum pinch force for 15 sec with the wrist stabilized at 30° extension, neutral, or 30° flexion using customized splints. The force discrepancy and the force coordination angle between the thumb and index finger forces were calculated, as well as the β-band (15-30 Hz) coherence between APB and FDI. The index finger applied greater force than the thumb (p 0.05). The directional force coordination was not significantly affected by wrist posture or CTS (p > 0.05). In general, digit force coordination during precision pinch seems to be sensitive to wrist flexion, but is not affected by CTS. The β-band muscular coherence was increased by wrist flexion for CTS patients (p < 0.05), which could be a compensatory mechanism for the flexion-induced exacerbation of CTS symptoms. This study demonstrates that wrist flexion negatively influences muscle and force coordination in CTS patients supporting the avoidance of flexion posture for symptom exacerbation and functional performance

    Bis(O,O′-diphenethyl dithio­phosphato-κ2 S,S′)bis­(4-methyl­pyridine-κN)nickel(II)

    Get PDF
    The title complex, [Ni(C16H18O2PS2)2(C6H7N)2], exhibits a roughly octa­hedral coordination geometry. The NiII atom lies on an inversion centre and is coordinated by four S atoms of O,O′-diphenethyl dithio­phosphate mol­ecules and two N atoms of 4-methyl­pyridine mol­ecules. Important geometric data include Ni—N = 2.100 (3) Å, and Ni—S = 2.5101 (10) and 2.4772 (11) Å

    {N′-[(E)-1-(5-Bromo-2-oxidophen­yl)ethyl­idene]-4-chloro­benzohydrazidato}pyridinenickel(II)

    Get PDF
    The title complex, [Ni(C15H10BrClN2O2)(C5H5N)], displays a square-planar coordination geometry around the NiII ion, formed by the tridentate hydrazone and monodentate pyridine ligands, with the N atoms in a trans arrangement about the Ni center

    A protocol specialized for microbial DNA extraction from living poplar wood

    Get PDF
    Microbial DNA extraction is a critical step in metagenomic research. High contents of chemical substances in wood tissues always cause low microbial DNA yield and quality. Up to date, almost no specialized methods involved in microbial DNA extraction from living wood were reported. In this study, an improved protocol (M1) concerning microbial DNA extraction from living poplar wood was developed. We compared microbial DNA yield and quality by M1 with those by other seven methods, including PowerSoil DNA isolation kit (M2), two soil microbial DNA extraction methods (M3 and M4), poplar genomic DNA extraction method from wood (M5), and microbial DNA extraction method from herb stems (M6), isolating bacteria (M7) and isolating fungus (M8). Results showed that M1 yielded much better quality and concentration of microbial DNA than the other methods (M2-M8) from both poplar wetwood and sapwood tissues. Following M1 protocol, 1 g of wetwood sample could yield 272.27 ng/ul (vol=50 ul) pure microbial DNA with the absorption ratios of 1.87 (A260/A230) and 1.66 (A260/A280). For 1 g of sapwood sample, these values were 361.83 ng/ul, 1.85 and 2.24, respectively. These DNA could be stably visualized by agarose gel electrophoresis and amplified by primer sets of bacteria (16S V3-V4, 16S-V4, 16S V4-V5) and fungus (ITS1, ITS2). While, the other seven methods only obtained less or contaminated microbial DNA, which could not be amplified stably by aforementioned primer sets. Our protocol provided an approach for microbial community study in living poplar wood in a more accurate way by molecular biology techniques

    Single cell epigenomic and transcriptomic analysis uncovers potential transcription factors regulating mitotic/meiotic switch

    Get PDF
    In order to reveal the complex mechanism governing the mitotic/meiotic switch in female germ cells at epigenomic and genomic levels, we examined the chromatin accessibility (scATAC-seq) and the transcriptional dynamics (scRNA-seq) in germ cells of mouse embryonic ovary between E11.5 to 13.5 at single-cell resolution. Adopting a strict transcription factors (TFs) screening framework that makes it easier to understand the single-cell chromatin signature and a TF interaction algorithm that integrates the transcript levels, chromatin accessibility, and motif scores, we identified 14 TFs potentially regulating the mitotic/meiotic switch, including TCFL5, E2F1, E2F2, E2F6, E2F8, BATF3, SP1, FOS, FOXN3, VEZF1, GBX2, CEBPG, JUND, and TFDP1. Focusing on TCFL5, we constructed Tcfl5(+/-) mice which showed significantly reduced fertility and found that decreasing TCFL5 expression in cultured E12.5 ovaries by RNAi impaired meiotic progression from leptotene to zygotene. Bioinformatics analysis of published results of the embryonic germ cell transcriptome and the finding that in these cells central meiotic genes (Stra8, Tcfl5, Sycp3, and E2f2) possess open chromatin status already at the mitotic stage together with other features of TCFL5 (potential capability to interact with core TFs and activate meiotic genes, its progressive activation after preleptotene, binding sites in the promoter region of E2f2 and Sycp3), indicated extensive amplification of transcriptional programs associated to mitotic/meiotic switch with an important contribution of TCFL5. We conclude that the identified TFs, are involved in various stages of the mitotic/meiotic switch in female germ cells, TCFL5 primarily in meiotic progression. Further investigation on these factors might give a significant contribution to unravel the molecular mechanisms of this fundamental process of oogenesis and provide clues about pathologies in women such as primary ovarian insufficiency (POI) due at least in part to meiotic defects
    corecore