3 research outputs found

    Silver(I)-Catalyzed Diastereoselective Hydroborylation of Cyclopropenes

    No full text
    An effective (NHC)AgCl catalysis was developed in the hydroborylation of cyclopropenes with B2pin2, delivering a variety of cyclopylboronates in a stereoselective manner, which could be easily transformed for the construction of versatile cyclopropanes. This protocol works effectively under mild reaction conditions in an open-air atmosphere, and it was easy to apply on a gram scale. This novel method in detail was also explored by control experiments, providing a number of key insights. The kinetic process followed by 1H NMR indicated that the reaction was finished in 15 min. Furthermore, the mechanism of silver(I)-catalyzed hydroborylation of cyclopropenes was proposed, with the protonation by methanol as the rate-determining step

    Rapid Access to Chiral Spiro[2.3] Lactams: Stereoselective Hydroborylation and Hydrosilylation and Remote Control of Axial Chirality by Copper-Catalyzed Desymmetrization of Spirocyclopropenes

    No full text
    Chiral spirocyclopropyl β-lactams are common motifs in bioactive compounds and pharmaceuticals. Here we disclose a diastereoselective and enantioselective hydroborylation and hydrosilylation of spirocyclopropenes, via a Cu-catalyzed desymmetrization strategy, for the rapid preparation of enantio-enriched spirocyclopropyl β-lactams. The efficient desymmetrization strategy allows the remote control of axial chirality, offering the borylated and silylated products bearing central, spiro, and axial chirality. The combination of multichiral elements would provide a novel motif for biological evaluation in potential drug discovery

    Ligand-Controlled Inversion of Diastereo- and Enantioselectivity in Silver-Catalyzed Azomethine Ylide–Imine Cycloaddition of Glycine Aldimino Esters with Imines

    No full text
    A highly diastereo- and enantioselective silver-catalyzed azomethine ylide–imine (AYI) cycloaddition reaction of glycine aldimino esters with imines was developed in which the Xing-Phos-controlled <i>syn</i>-selective or DTBM-Segphos-induced <i>anti</i>-selective AYI cycloaddition reaction could be applied to the synthesis of a variety of stereodivergent 1-alkyl-2,5-substituted imidazolidines with high yields and excellent enantioselectivities (up to 99% ee) as well as good diastereoselectivities (up to 99:1 dr) under mild reaction conditions
    corecore