64 research outputs found

    Microbial transformation of neomycin by a mutant of neomycin-producing Streptomyces fradiae

    Get PDF
    Utilizing a mutant of neomycin-producing Streptomyces fradiae mutagenized with neutron radiation, biotransformation of neomycin into modified compounds was studied. The biotransformation products were isolated by ion exchange chromatography and monitored by thin layer chromatography bioautography (TLCB). Antibacterial activity of biotransformation products against ten species of bacteria including four plant pathogens was tested qualitatively by TLCB and detected quantitatively by Oxford cup method. The minimal inhibitory concentration (MIC) of biotransformation products was tested by agar diffusion method. Three isolated transformation products had obvious antibacterial activity against Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris and Pseudomonas solanacarum. At the concentration of 50 μg/ml, the transformation product X had a similar antibacterial effect with neomycin but the transformation product Y and Z showed a decreased effect compared to neomycin except for P. vulgaris and P. solanacarum. However, the results from MIC analysis demonstrated that only the transformation product X maintained the same inhibitory effect with neomycin.Key words: Neomycin, biotransformation, Streptomyces fradiae, mutant, neutron radiation

    Pulsed laser-deposited n-Si/NiO_x photoanodes for stable and efficient photoelectrochemical water splitting

    Get PDF
    An electrocatalytic and stable nickel oxide (NiO_x) thin layer was successfully deposited on an n-Si (100) substrate by pulsed laser deposition (PLD), acting as a photoanode for efficient photo-oxidation of water under solar illumination. It was revealed that the formed n-Si/NiO_x heterojunction with good Schottky contact could improve photogenerated charge separation, and thus n-Si photoanodes deposited with a 105 nm-thick NiO_x electrocatalytic layer exhibited a photovoltage of ∼350 mV, leading to greatly improved photoelectrochemical performances for water oxidation. The stability of the photoanode was significantly enhanced with the increasing thickness of NiO_x protective layers. This study demonstrates a simple and effective method to enable the use of planar n-Si (100) substrates as efficient and durable photoanodes for practical solar water oxidation

    Chromosome-level reference genome assembly provides insights into the evolution of Pennisetum alopecuroides

    Get PDF
    Pennisetum alopecuroides is an important forage grass resource, which plays a vital role in ecological environment improvement. Therefore, the acquisition of P. alopecuroides genome resources is conducive to the study of the adaptability of Pennisetum species in ecological remediation and forage breeding development. Here we assembled a P. alopecuroides cv. 'Liqiu' genome at the chromosome level with a size of approximately 845.71 Mb, contig N50 of 84.83Mb, and genome integrity of 99.13% as assessed by CEGMA. A total of 833.41-Mb sequences were mounted on nine chromosomes by Hi-C technology. In total, 60.66% of the repetitive sequences and 34,312 genes were predicted. The genomic evolution analysis showed that P. alopecuroides cv. 'Liqiu' was isolated from Setaria 7.53–13.80 million years ago and from Cenchrus 5.33–8.99 million years ago, respectively. The whole-genome event analysis showed that P. alopecuroides cv. 'Liqiu' underwent two whole-genome duplication (WGD) events in the evolution process, and the duplication events occurred at a similar time to that of Oryza sativa and Setaria viridis. The completion of the genome sequencing of P. alopecuroides cv. 'Liqiu' provides data support for mining high-quality genetic resources of P. alopecuroides and provides a theoretical basis for the origin and evolutionary characteristics of Pennisetum

    nCD64 index as a novel inflammatory indicator for the early prediction of prognosis in infectious and non-infectious inflammatory diseases: An observational study of febrile patients

    Get PDF
    BackgroundGenerally, febrile patients admitted to the Department of Infectious Diseases, Fudan University Affiliated Huashan Hospital, China may eventually be diagnosed as infectious (ID) or non-infectious inflammatory diseases (NIID). Furthermore, mortality from sepsis remains incredibly high. Thus, early diagnosis and prognosis evaluation of sepsis is necessary. Here, we investigated neutrophil (n)CD64 index profile in a cohort of febrile patients and explored its diagnostic and prognostic value in ID and NIID.MethodsThis observational cohort study enrolled 348 febrile patients from the Emergency Department and Department of Infectious Diseases. nCD64 index were detected using flow cytometry, and dynamically measured at different timepoints during follow-up. Procalcitonin (PCT), C-reactive protein (CRP), and ferritin levels were measured routinely. Finally, the diagnostic and prognostic value of nCD64 index were evaluated by receiver operating characteristic (ROC) analysis and Kaplan-Meier curve analysis.ResultsOf included 348 febrile patients, 238, 81, and 29 were categorized into ID, NIID, and lymphoma groups, respectively. In ID patients, both SOFA score and infection site had impact on nCD64 index expression. In NIID patients, adult-onset Still’s disease patients had the highest nCD64 index value, however, nCD64 index couldn’t distinguish between ID and NIID. Regardless of the site of infection, nCD64 index was significantly higher in bacterial and viral infections than in fungal infections, but it could not discriminate between bacterial and viral infections. In bloodstream infections, gram-negative (G-) bacterial infections showed an obvious increase in nCD64 index compared to that of gram-positive (G+) bacterial infections. nCD64 index has the potential to be a biomarker for distinguishing between DNA and RNA virus infections. The routine measurement of nCD64 index can facilitate septic shock diagnosis and predict 28-day hospital mortality in patients with sepsis. Serial monitoring of nCD64 index in patients with sepsis is helpful for evaluating prognosis and treatment efficacy. Notably, nCD64 index is more sensitive to predict disease progression and monitor glucocorticoid treatment in patients with NIID.ConclusionsnCD64 index can be used to predict 28-day hospital mortality in patients with sepsis and to evaluate the prognosis. Serial determinations of nCD64 index can be used to predict and monitor disease progression in patients with NIID

    PGC-1α Inhibits Oleic Acid Induced Proliferation and Migration of Rat Vascular Smooth Muscle Cells

    Get PDF
    BACKGROUND: Oleic acid (OA) stimulates vascular smooth muscle cell (VSMC) proliferation and migration. The precise mechanism is still unclear. We sought to investigate the effects of peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1 alpha (PGC-1alpha) on OA-induced VSMC proliferation and migration. PRINCIPAL FINDINGS: Oleate and palmitate, the most abundant monounsaturated fatty acid and saturated fatty acid in plasma, respectively, differently affect the mRNA and protein levels of PGC-1alpha in VSMCs. OA treatment resulted in a reduction of PGC-1alpha expression, which may be responsible for the increase in VSMC proliferation and migration caused by this fatty acid. In fact, overexpression of PGC-1alpha prevented OA-induced VSMC proliferation and migration while suppression of PGC-1alpha by siRNA enhanced the effects of OA. In contrast, palmitic acid (PA) treatment led to opposite effects. This saturated fatty acid induced PGC-1alpha expression and prevented OA-induced VSMC proliferation and migration. Mechanistic study demonstrated that the effects of PGC-1alpha on VSMC proliferation and migration result from its capacity to prevent ERK phosphorylation. CONCLUSIONS: OA and PA regulate PGC-1alpha expression in VSMCs differentially. OA stimulates VSMC proliferation and migration via suppression of PGC-1alpha expression while PA reverses the effects of OA by inducing PGC-1alpha expression. Upregulation of PGC-1alpha in VSMCs provides a potential novel strategy in preventing atherosclerosis

    Anti-Inflammatory Effect of IL-37-Producing T-Cell Population in DSS-Induced Chronic Inflammatory Bowel Disease in Mice

    No full text
    Inflammatory bowel disease (IBD) is a chronic inflammatory disease that is thought to arise in part from abnormal adaptive immune responses against intestinal microbiota. T lymphocytes play significant roles in triggering mucosal inflammation and/or maintaining gut immune homeostasis. It has been demonstrated that IL-37 expresses in a variety of cells and exerts a protective function involved in both innate immunity and adaptive immunity. In the present study, a population of IL-37-producing T-cells was detected in the spleen and mesenteric lymph nodes (MLNs) in IL-37+/+ mice after dextran sodium sulfate (DSS) induction. Adoptive transfer of the T-cells from the spleen of IL-37+/+ mice following DSS treatment partly recovered the body weight, improved the disease activity index (DAI) and macroscopic damage score, and attenuated the intestinal inflammation. In addition, colon shortening, an indirect marker of inflammation, was decreased, consistent with the decreased IFN-γ level and the increased IL-10 level in the colonic tissue. Collectively, our data uncovered a subset of T-lymphocytes expressing IL-37, which represents a potent regulation of immunity and serves as the protective role in chronic IBD
    • …
    corecore