2 research outputs found

    Ice Nanoribbons Confined in Uniaxially Distorted Carbon Nanotubes

    No full text
    Water confined inside nanopores exhibits unusual static and dynamic properties that depend on the pore size, pore topology, and hydrophobicity and roughness of the pore walls. The properties also depend on the geometrical shape of the pore cross sections. Here, we investigated water inside distorted single-wall carbon nanotubes (SWCNTs) by means of classical molecular dynamics calculations, over a temperature range of 100–350 K. SWCNTs, which provide ideal one-dimensional cylindrical pores with atomically smooth nonpolar walls, were uniaxially compressed in a direction perpendicular to the SWCNT axes with a deformation ratio γ up to 60%, where γ represents the ratio of deformation amount to the initial SWCNT diameter <i>D</i>. With increasing γ in an SWCNT with <i>D</i> = 1.24 nm, a hexagonal ice nanotube was converted to the liquid state with high water mobility down to 200 K and then to a new form of ice, ice nanoribbon, consisting of four ferroelectric water chains. In an SWCNT with <i>D</i> = 1.51 nm, on the other hand, the water was converted to an ice nanoribbon with five ferroelectric water chains from the liquid state. It was demonstrated that the application of uniaxial pressure is a useful technique to control water properties, such as dielectricity, mobilities, and structures

    Additional file 1: Figure S1. of Anti-proliferative effects of T cells expressing a ligand-based chimeric antigen receptor against CD116 on CD34+ cells of juvenile myelomonocytic leukemia

    No full text
    Effects of GMR CAR T cells on GM or erythroid colony growth of CB and BM CD34+ cells. Either GMR CAR T cells or mock T cells were incubated with normal CB CD34+ cells (n = 3) or normal BM CD34+ cells (n = 3) at E:T ratios of 1:1 and 1:4, in the presence of SCF + TPO + IL-3 for 2 days. Cells were then cultured on methylcellulose in media supplemented with GM-CSF, SCF, IL-3, and erythropoietin. After 14 days, the numbers of GM colonies and erythroid colonies were calculated for each. Values are expressed as percentages of the total colony numbers obtained by culture in the absence of T cells. The numbers of GM colonies grown by 500 CB CD34+ cells and BM CD34+ cells in the absence of T cells were 38.6 ± 4.6 and 24.5 ± 2.9, respectively. The numbers of erythroid colonies grown by 500 CB CD34+ cells and BM CD34+ cells in the absence of T cells were 42.7 ± 15.5 and 19.1 ± 2.6, respectively. (EPS 439 kb
    corecore