208 research outputs found

    Area Modeling using Stay Information for Large-Scale Users and Analysis for Influence of COVID-19

    Full text link
    Understanding how people use area in a city can be a valuable information in a wide range of fields, from marketing to urban planning. Area usage is subject to change over time due to various events including seasonal shifts and pandemics. Before the spread of smartphones, this data had been collected through questionnaire survey. However, this is not a sustainable approach in terms of time to results and cost. There are many existing studies on area modeling, which characterize an area with some kind of information, using Point of Interest (POI) or inter-area movement data. However, since POI is data that is statically tied to space, and inter-area movement data ignores the behavior of people within an area, existing methods are not sufficient in terms of capturing area usage changes. In this paper, we propose a novel area modeling method named Area2Vec, inspired by Word2Vec, which models areas based on people's location data. This method is based on the discovery that it is possible to characterize an area based on its usage by using people's stay information in the area. And it is a novel method that can reflect the dynamically changing people's behavior in an area in the modeling results. We validated Area2vec by performing a functional classification of areas in a district of Japan. The results show that Area2Vec can be usable in general area analysis. We also investigated area usage changes due to COVID-19 in two districts in Japan. We could find that COVID-19 made people refrain from unnecessary going out, such as visiting entertainment areas.Comment: This paper is an English translation of the paper published in the Transactions of the Information Processing Society of Japan (http://doi.org/10.20729/00213190

    SimBlock: A Blockchain Network Simulator

    Full text link
    Blockchain, which is a technology for distributedly managing ledger information over multiple nodes without a centralized system, has elicited increasing attention. Performing experiments on actual blockchains are difficult because a large number of nodes in wide areas are necessary. In this study, we developed a blockchain network simulator SimBlock for such experiments. Unlike the existing simulators, SimBlock can easily change behavior of node, so that it enables to investigate the influence of nodes' behavior on blockchains. We compared some simulation results with the measured values in actual blockchains to demonstrate the validity of this simulator. Furthermore, to show practical usage, we conducted two experiments which clarify the influence of neighbor node selection algorithms and relay networks on the block propagation time. The simulator could depict the effects of the two techniques on block propagation time. The simulator will be publicly available in a few months.Comment: Proc. 2nd Workshop on Cryptocurrencies and Blockchains for Distributed Systems (CryBlock 2019) (in conj. with INFOCOM 2019

    First Nonperturbative Test of a Relativistic Heavy Quark Action in Quenched Lattice QCD

    Get PDF
    We perform a numerical test of a relativistic heavy quark(RHQ) action, recently proposed by Tsukuba group, in quenched lattice QCD at a0.1a\simeq 0.1 fm. With the use of the improvement parameters previously determined at one-loop level for the RHQ action, we investigate a restoration of rotational symmetry for heavy-heavy and heavy-light meson systems around the charm quark mass. We focused on two quantities, the meson dispersion relation and the pseudo-scalar meson decay constants. It is shown that the RHQ action significantly reduces the discretization errors due to the charm quark mass. We also calculate the S-state hyperfine splittings for the charmonium and charmed-strange mesons and the DsD_s meson decay constant. The remaining discretization errors in the physical quantities are discussed.Comment: 21 pages, 16 figures. A reference and a comment added, a major modification in appendix, several minor changes in the abstract and the main text. Errors in affiliation are corrected. Version appeared in JHE

    Numerical study of QCD phase diagram at high temperature and density by a histogram method

    Get PDF
    We study the QCD phase structure at high temperature and density adopting a histogram method. Because the quark determinant is complex at finite density, the Monte-Carlo method cannot be applied directly. We use a reweighting method and try to solve the problems which arise in the reweighting method, i.e. the sign problem and the overlap problem. We discuss the chemical potential dependence of the probability distribution function in the heavy quark mass region and examine the applicability of the approach in the light quark region.Comment: 5 pages, 6 figures, presented at the International Conference "Critical Point and Onset of Deconfinement - CPOD 2011", Wuhan, November 7-11, 201

    General purpose lattice QCD code set Bridge++ 2.0 for high performance computing

    Get PDF
    XXXII IUPAP Conference on Computational Physics Aug 2 – Aug 5, 2021 Coventry (online)Bridge++ is a general-purpose code set for a numerical simulation of lattice QCD aiming at a readable, extensible, and portable code while keeping practically high performance. The previous version of Bridge++ is implemented in double precision with a fixed data layout. To exploit the high arithmetic capability of new processor architecture, we extend the Bridge++ code so that optimized code is available as a new branch, i.e., an alternative to the original code. This paper explains our strategy of implementation and displays application examples to the following architectures and systems: Intel AVX-512 on Xeon Phi Knights Landing, Arm A64FX-SVE on Fujitsu A64FX (Fugaku), NEC SX-Aurora TSUBASA, and GPU cluster with NVIDIA V100

    Effect of olmesartan on the levels of circulating endothelial progenitor cell after drug-eluting stent implantation in patients receiving statin therapy

    Get PDF
    AbstractBackgroundThe endothelial progenitor cell (EPC) plays an important role in repairing vascular injury. Statins and angiotensin II receptor blockers increase the level of circulating EPCs. However, it is unknown whether the angiotensin II receptor blocker olmesartan synergistically acts with statins to increase the levels of circulating EPCs. Moreover, the association between the levels of circulating EPCs and endothelial dysfunction after implantation of drug-eluting stents (DESs) has not been evaluated.MethodsNine patients with stable coronary artery disease underwent percutaneous coronary intervention (PCI) and received DES implantation. All patients received olmesartan in addition to statin therapy after PCI. The dose of olmesartan was based on the physician's discretion as per the patients’ blood pressure. The levels of circulating EPCs were analyzed at baseline, post-PCI, and 1, 2, 3, and 8 months after PCI. Coronary angiography and the acetylcholine provocation test were performed on all patients at 8 months.ResultsAlthough the angiotensin II level significantly changed, the levels of circulating EPCs did not change during 8 months of olmesartan treatment (3.1±0.6cells/ml, 2.5±0.8cells/ml, 2.0±0.6cells/ml, 2.9±0.9cells/ml, 3.0±0.4cells/ml, 3.4±0.8cells/ml, p=0.64). The patients were subsequently divided into two groups based on whether the level of circulating EPCs was less or greater than 4cells/ml at 8 months. There were no significant differences in the mean vessel diameter of each segment (proximal, proximal edge, distal edge, and distal) after the acetylcholine provocation test between the two groups.ConclusionsLow-to-moderate doses of olmesartan might not increase the level of circulating EPCs in patients receiving statin therapy. There might be no association between the levels of circulating EPCs and the degree of coronary vasospasm in the acetylcholine provocation test 8 months after DES implantation
    corecore