55 research outputs found

    The carboxy-terminal fragment of α1A calcium channel preferentially aggregates in the cytoplasm of human spinocerebellar ataxia type 6 Purkinje cells

    Get PDF
    Spinocerebellar ataxia type 6 (SCA6) is an autosomal dominant neurodegenerative disease caused by a small polyglutamine (polyQ) expansion (control: 4–20Q; SCA6: 20–33Q) in the carboxyl(C)-terminal cytoplasmic domain of the α1A voltage-dependent calcium channel (Cav2.1). Although a 75–85-kDa Cav2.1 C-terminal fragment (CTF) is toxic in cultured cells, its existence in human brains and its role in SCA6 pathogenesis remains unknown. Here, we investigated whether the small polyQ expansion alters the expression pattern and intracellular distribution of Cav2.1 in human SCA6 brains. New antibodies against the Cav2.1 C-terminus were used in immunoblotting and immunohistochemistry. In the cerebella of six control individuals, the CTF was detected in sucrose- and SDS-soluble cytosolic fractions; in the cerebella of two SCA6 patients, it was additionally detected in SDS-insoluble cytosolic and sucrose-soluble nuclear fractions. In contrast, however, the CTF was not detected either in the nuclear fraction or in the SDS-insoluble cytosolic fraction of SCA6 extracerebellar tissues, indicating that the CTF being insoluble in the cytoplasm or mislocalized to the nucleus only in the SCA6 cerebellum. Immunohistochemistry revealed abundant aggregates in cell bodies and dendrites of SCA6 Purkinje cells (seven patients) but not in controls (n = 6). Recombinant CTF with a small polyQ expansion (rCTF-Q28) aggregated in cultured PC12 cells, but neither rCTF-Q13 (normal-length polyQ) nor full-length Cav2.1 with Q28 did. We conclude that SCA6 pathogenesis may be associated with the CTF, normally found in the cytoplasm, being aggregated in the cytoplasm and additionally distributed in the nucleus

    Laboratory Scale Investigation of Dispersion Effects on Saltwater Movement due to Cutoff Wall Installation

    No full text
    In the numerical investigation of saltwater transport in coastal aquifers, we need to correctly evaluate the hydrodynamic dispersion in the flow field. In this study, we focused on the role of dispersivity in the removal process of residual saltwater in a laboratory scale cutoff wall experiment. From a pulse-type fluorescent tracer injection experiment in a saturated porous media of glass beads with a mean diameter of 0.088 cm, the estimated longitudinal and transverse dispersivities were found to be 0.07 cm and 0.0025 cm, respectively. Numerical analysis of the saltwater intrusion and subsequent removal after cutoff wall installation using SEAWAT and the generated dispersivity ratio (αL/αT) of 28 reproduces well the measured salt concentration changes with time. Whereas, if a dispersivity ratio of 10 is used in the numerical simulation, transverse dispersion in the saltwater and freshwater mixing zone becomes large and the residual saltwater is removed faster than the laboratory experiment. Inversely, if 100 was used, the residual saltwater removal time took longer. The transverse dispersion is a key parameter in the mechanical dispersion of saltwater in the mixing zone after cutoff wall installation

    Laboratory Scale Investigation of Dispersion Effects on Saltwater Movement due to Cutoff Wall Installation

    No full text
    In the numerical investigation of saltwater transport in coastal aquifers, we need to correctly evaluate the hydrodynamic dispersion in the flow field. In this study, we focused on the role of dispersivity in the removal process of residual saltwater in a laboratory scale cutoff wall experiment. From a pulse-type fluorescent tracer injection experiment in a saturated porous media of glass beads with a mean diameter of 0.088 cm, the estimated longitudinal and transverse dispersivities were found to be 0.07 cm and 0.0025 cm, respectively. Numerical analysis of the saltwater intrusion and subsequent removal after cutoff wall installation using SEAWAT and the generated dispersivity ratio (αL/αT) of 28 reproduces well the measured salt concentration changes with time. Whereas, if a dispersivity ratio of 10 is used in the numerical simulation, transverse dispersion in the saltwater and freshwater mixing zone becomes large and the residual saltwater is removed faster than the laboratory experiment. Inversely, if 100 was used, the residual saltwater removal time took longer. The transverse dispersion is a key parameter in the mechanical dispersion of saltwater in the mixing zone after cutoff wall installation

    健康食品を中心とした食生活のため発症したと考えられる脚気衝心の1例

    No full text

    肝右葉切除の一症例における術後血清胆汁酸の変動について

    Get PDF
    Postoperative serum bile acids in a patient with hepatectomy were determined by gas-liquid chromatography. The results showed that two high peaks of serum bile acid levels were found respectively on the 2nd and 7th postoperative day, although serum bile acid levels returned to normal after the 15th postoperative day. The high peaks were considered to be due to the escape of necrotic hepatic intracellular bile acids into systemic blood stream, poor uptake of bile acids by hepatocytes and reabsorption of bile acids leaked from the residual liver into the peritoneal cavity

    A Case of Iron Overload Cardiomyopathy

    No full text

    Four-dimensional noise reduction using the time series of medical computed tomography datasets with short interval times: a static-phantom study

    Get PDF
    Backgrounds. This study examines the hypothesis that four-dimensional noise reduction (4DNR) with short interval times reduces noise in cardiac computed tomography (CCT) using “padding” phases. Furthermore, the capability of reducing the reduction dose in CCT using this post-processing technique was assessed. Methods. Using base and quarter radiation doses for CCT (456 and 114 mAs/rot with 120 kVp), a static phantom was scanned ten times with retrospective electrocardiogram gating, and 4DNR with short interval times (50 ms) was performed using a post-processing technique. Differences in the computed tomography (CT) attenuation, contrast-to-noise ratio (CNR) and spatial resolution with modulation transfer function in each dose image obtained with and without 4DNR were assessed by conducting a Tukey–Kramer’s test and non-inferiority test. Results. For the base dose, by using 4DNR, the CNR was improved from 1.18 ± 0.15 to 2.08 ± 0.20 (P = 0.001), while the CT attenuation and spatial resolution of the image of 4DNR did not were significantly inferior to those of reference image (P < 0.001). CNRs of the quarter-dose image in 4DNR also improved to 1.28 ± 0.11, and were not inferior to those of the non-4DNR images of the base dose (P < 0.001). Conclusions. 4DNR with short interval times significantly reduced noise. Furthermore, applying this method to CCT would have the potential of reducing the radiation dose by 75%, while maintaining a similar image noise level
    corecore