287 research outputs found

    An analytical method for measuring α-amylase activity in starch-containing foods

    Get PDF
    The quality of starch-containing foods may be significantly impaired by contamination with very small amounts of α-amylase, which can enzymatically hydrolyze the starch and cause viscosity loss. Thus, for quality control, it is necessary to have an analytical method that can measure low amylase activity. We developed a sensitive analytical method for measuring the activity of α-amylase (from Bacillus subtilis) in starch-containing foods. The method consists of six steps: (1) crude extraction of α-amylase by centrifugation and filtration; (2) α-amylase purification by desalting and anion-exchange chromatography; (3) reaction of the purified amylase with boron-dipyrromethene (BODIPY)-labeled substrate, which releases a fluorescent fragment upon digestion of the substrate, thus avoiding interference from starch derivatives in the sample; (4) stopping the reaction with acetonitrile; (5) reversed-phase solid-phase extraction of the fluorescent substrate to remove contaminating dye and impurities; and (6) separation and measurement of BODIPY fluorescence by HPLC. The proposed method could quantify α-amylase activities as low as 10mU/mL, which is enough to reduce the viscosity of starch-containing foods. © 2012 John Wiley & Sons, Ltd

    VERA monitoring of the radio jet 3C 84 during 2007--2013: detection of non-linear motion

    Get PDF
    We present a kinematic study of the subparsec-scale radio jet of the radio galaxy 3C 84/NGC 1275 with the VLBI Exploration of Radio Astrometry (VERA) array at 22 GHz for 80 epochs from 2007 October to 2013 December. The averaged radial velocity of the bright component "C3" with reference to the radio core is found to be 0.27pm0.02c0.27 pm 0.02c between 2007 October and 2013 December. This constant velocity of C3 is naturally explained by the advancing motion of the head of the mini-radio lobe. We also find a non-linear component in the motion of C3 with respect to the radio core. We briefly discuss possible origins of this non-linear motion.Comment: 11 pages, 7 figures, 8 tables (table 1 - 5 are supplementaries), accepted for publication on PAS

    Suzaku Detection of Extended/Diffuse Hard X-Ray Emission from the Galactic Center

    Full text link
    Five on-plane regions within +/- 0.8deg of the Galactic center were observed with the Hard X-ray Detector (HXD) and the X-ray Imaging Spectrometer (XIS) onboard Suzaku. From all regions, significant hard X-ray emission was detected with HXD-PIN up to 40 keV, in addition to the extended plasma emission which is dominant in the XIS band. The hard X-ray signals are inferred to come primarily from a spatially extended source, rather than from a small number of bright discrete objects. Contributions to the HXD data from catalogued X-ray sources, typically brighter than 1 mCrab, were estimated and removed using information from Suzaku and other satellites. Even after this removal, the hard X-ray signals remained significant, exhibiting a typical 12--40 keV surface brightness of 4E-10 erg cm-2 s-1 deg-2 and power-law-like spectra with a photon index of 1.8. Combined fittings to the XIS and HXD-PIN spectra confirm that a separate hard tail component is superposed onto the hot thermal emission, confirming a previous report based on the XIS data. Over the 5--40 keV band, the hard tail is spectrally approximated by a power law of photon index ~2, but better by those with somewhat convex shapes. Possible origins of the extended hard X-ray emission are discussed.Comment: 13 pages, 18 figure
    corecore